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BITCOIN VOLATILITY ANALYSIS: DETERMINISTIC 
AND PROBABILISTIC APPROACH

STANISLAV KOVÁČ1

Analýza volatility bitcoinu: deterministický a probabilistický prístup

Abstract: Bitcoin is the phenomenon of the last few years and has dragged 
quite a lot of attention either from academicians or investors. Price fluctuations 
in the Bitcoin spot rate on the Bitcoin exchanges is driven by many factors; 
hence volatility analysis is of particular importance. In this paper we analyze 
deterministic approach represented by family GARCH (fGARCH) model and 
probabilistic approach by stochastic volatility model. Except for volatility 
time evolution, we involve short-term forecast. As a benchmark we use  
30-days historical volatility. Based on mean average percentage error, family 
GARCH model tracks volatility better. 
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1.  Introduction 
We consider the financial market equilibrium with symmetric information 

with a single risky asset as presented by Jong and Rindi [8]. The representative 
risk-neutral agent receives an endowment of both the risky asset  and the 
risk-free asset . At the end of the trading game there is payment from the 
risk-free asset  and from risky asset  (normally distributed random 
variable).
The agent’s objective function is:

(1)
where  is agent’s utility function,  is agent’s demand function for risky 

asset and  is the price of risky asset. The price of risk-free asset is normalized 
to 1. The first order condition (f.o.c.) has the form:

(2)
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1. Introduction
We consider the financial market equilibrium with symmetric information

with a single risky asset as presented by Jong and Rindi [8]. The 
representative risk-neutral agent receives an endowment of both the risky 
asset 𝐼𝐼 and the risk-free asset 𝐼𝐼𝑓𝑓. At the end of the trading game there is 
payment from the risk-free asset 1 + 𝑟𝑟𝑓𝑓 and from risky asset �̃�𝐹 (normally 
distributed random variable).

The agent’s objective function is:
Max
𝑋𝑋

𝐸𝐸[𝑢𝑢(�̃�𝑤)] , �̃�𝑤 = (𝐼𝐼 + 𝑋𝑋)�̃�𝐹 + (𝐼𝐼𝑓𝑓 − 𝑋𝑋𝑋𝑋)(1 + 𝑟𝑟𝑓𝑓), (1)

where 𝑢𝑢 is agent’s utility function,𝑋𝑋 is agent’s demand function for risky 
asset and 𝑋𝑋 is the price of risky asset. The price of risk-free asset is 
normalized to 1. The first order condition (f.o.c.) has the form: 

E [𝑢𝑢′(�̃�𝑤) (�̃�𝐹 − 𝑋𝑋(1 + 𝑟𝑟𝑓𝑓))] = 0. (2)
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Simplifying f.o.c. by using covariance formula2 and Stein’s lemma3we get:

(3)

From this equation, the equilibrium price follows immediately as:

(4)

In case of constant absolute risk aversion utility function 

where  is risk aversion constant, the price equation 
has the form:

(5)

Interpretation of (5) is quite simple: the price of the asset is its 
discounted expected cash flow less a discount for risk. The risk depends on:

1. the volatility of payoff,

2. the endowment of the risky asset,

3. the risk aversion.

The definition of volatility might differ depending on the point of view. 
Volatility usually refers to the variation observed in some phenomenon over 
time. Especially, statisticians and econometricians use volatility to describe the 
variability of the random component of time series. In our case, it is the volatility 
of return (payoff).

The amount of purchased assets is modifiable by decision makers as well as 
their attitude to the risk. On the other hand, the volatility evolves in time with only 
a small effect of some individual; therefore it is necessary to find a correct way to 
measure it. One approach is to model the evolution of volatility deterministically, 
i.e. through the (G)ARCH models. After the groundbreaking papers of Engle [4] and 

2  Let  and  to be random variables, then:

3 Let  and  to be continuous, differentiable and jointly normally distributed 
random variables, then:

Simplifying f.o.c. by using covariance formula2 and Stein’s lemma3we 
get: 

 E[𝑢𝑢′(�̃�𝑤)]E [(�̃�𝐹 − 𝑝𝑝(1 + 𝑟𝑟𝑓𝑓))] + E[𝑢𝑢′′(�̃�𝑤)](𝐼𝐼 + 𝑋𝑋)Var(�̃�𝐹) = 0. (3) 

From this equation, the equilibrium price follows immediately as: 

 𝑝𝑝 = 1
(1 + 𝑟𝑟𝑓𝑓)

[E[�̃�𝐹] + E[𝑢𝑢′′(�̃�𝑤)]
E[𝑢𝑢′(�̃�𝑤)] (𝐼𝐼 + 𝑋𝑋)Var(�̃�𝐹)]. (4) 

In case of constant absolute risk aversion utility function 𝑢𝑢(�̃�𝑤) =
−exp(−𝐴𝐴�̃�𝑤)where 𝐴𝐴 is risk aversion constant, the price equation has the 
form: 

 𝑝𝑝 = 1
(1 + 𝑟𝑟𝑓𝑓)

[E[�̃�𝐹] − 𝐴𝐴(𝐼𝐼 + 𝑋𝑋)Var(�̃�𝐹)]. (5) 

Interpretation of (5) is quite simple: the price of the asset is its discounted 
expected cash flow less a discount for risk. The risk depends on: 

1. the volatility of payoff, 
2. the endowment of the risky asset, 
3. the risk aversion. 

The definition of volatility might differ depending on the point of view. 
Volatility usually refers to the variation observed in some phenomenon over 
time. Especially, statisticians and econometricians use volatility to describe 
the variability of the random component of time series. In our case, it is the 
volatility of return (payoff). 

The amount of purchased assets is modifiable by decision makers as well 
as their attitude to the risk. On the other hand, the volatility evolves in time 
with only a small effect of some individual; therefore it is necessary to find a 
correct way to measure it. One approach is to model the evolution of volatility 
deterministically, i.e. through the (G)ARCH models. After the 
groundbreaking papers of Engle [4] and Bollerslev [1], these models have 
been generalized in numerous ways and applied to a vast amount of real-
world problems. Taylor [11] proposed an alternative in his seminal work to 
model the volatility probabilistically, i.e. though a state-space model where 
the logarithm of the squared volatilities – the latent states – follow an 
autoregressive process of the first order. Over time, this specification became 
known as the stochastic volatility (SV) models which have found comparably 

 
2    Let 𝑥𝑥1 and 𝑥𝑥2 to be random variables, then: 
Cov[𝑥𝑥1, 𝑥𝑥2] = E[𝑥𝑥1𝑥𝑥2] − E[𝑥𝑥1]E[𝑥𝑥2]. 
3   Let 𝑥𝑥1 and 𝑥𝑥2 to be continuous, differentiable and jointly normally distributed random 
variables, then: 
Cov[𝑔𝑔(𝑥𝑥1), 𝑥𝑥2] = E[𝑔𝑔′(𝑥𝑥1)]Cov[𝑥𝑥1, 𝑥𝑥2]. 

little use in applied work mostly due to the lack of standard software package 
implementation.  

We have chosen to apply this symmetric game on bitcoin. Bitcoin is a 
decentralized digital currency without a central bank or administrator. During 
the last two years, bitcoin was able to reach the high approximately at $19,345 
and the low at $2,559, which suggests strong fluctuation and ergo volatility 
analysis is worth to apply.  

Being able to analyse historical development of volatility as well as to 
create accurate forecasts are crucial for risk management, portfolio selections 
and pricing financial instruments. The paper uses deterministic and 
probabilistic approach to Bitcoin volatility analysis. In the following section 
we present models and estimation methods, in the third chapter our empirical 
results are shown and the last chapter concludes.  
2.   Methodology 

We describe fGARCH model in which all relevant information is 
observed and the model is correctly specified. The volatility is known, or 
predetermined, as of time 𝑡𝑡 − 1, and stochastic volatility models, if some 
relevant information is not observable, then it is possible to exploit a genuine 
subset of the full information set. Under this scenario, the true conditional 
variance will be unobservable, even under correct model specification and the 
volatility process becomes genuinely latent. 
2.1  Stochastic volatility (SV) model 

Let 𝒚𝒚 = (𝑦𝑦1, 𝑦𝑦2 … , 𝑦𝑦𝑛𝑛)𝑇𝑇 be a vector of returns with zero mean. Each return 
observation is assumed to have its intrinsic contemporaneous variance 𝑒𝑒ℎ𝑡𝑡  
therefore relaxing the homoskedasticity assumption. This variance does not 
vary unrestrictedly over time, it follows an autoregressive process of the first 
order. Following Kim et al. [10] SV centered parametrization is given: 

 𝑦𝑦𝑡𝑡|ℎ𝑡𝑡~𝒩𝒩(0, exp ℎ𝑡𝑡), (6) 

 ℎ𝑡𝑡|ℎ𝑡𝑡−1, 𝜇𝜇, 𝜙𝜙, 𝜎𝜎𝜂𝜂~𝒩𝒩(𝜇𝜇 + 𝜙𝜙(ℎ𝑡𝑡−1 − 𝜇𝜇), 𝜎𝜎𝜂𝜂), (7) 

 ℎ0|𝜇𝜇, 𝜙𝜙, 𝜎𝜎𝜂𝜂~𝒩𝒩(𝜇𝜇, 𝜎𝜎𝜂𝜂 (1 − 𝜙𝜙2)⁄ ), (8) 

where 𝜇𝜇 is the level of log-variance,𝜙𝜙 is the persistence of log variance 
and 𝜎𝜎𝜂𝜂 is the volatility of log-variance. We refer to 𝜽𝜽 = (𝜇𝜇, 𝜙𝜙, 𝜎𝜎𝜂𝜂)

𝑇𝑇
 as the 

vector of parameters. The process appearing in (6) - (8)𝒉𝒉 = (ℎ1, ℎ2 … , ℎ𝑛𝑛)𝑇𝑇 
is the latent time-varying volatility process (log-variance process). 

The prior distribution of 𝜽𝜽needs to be specified before setting the model. 
We choose independent components for each parameter, i.e. 𝑝𝑝(𝜽𝜽) =
𝑝𝑝(𝜇𝜇)𝑝𝑝(𝜙𝜙)𝑝𝑝(𝜎𝜎𝜂𝜂). The level 𝜇𝜇 ∈ ℝ has the usual normal prior distribution 
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Simplifying f.o.c. by using covariance formula2 and Stein’s lemma3we get:

(3)

From this equation, the equilibrium price follows immediately as:

(4)

In case of constant absolute risk aversion utility function 

where  is risk aversion constant, the price equation 
has the form:

(5)

Interpretation of (5) is quite simple: the price of the asset is its 
discounted expected cash flow less a discount for risk. The risk depends on:

1. the volatility of payoff,

2. the endowment of the risky asset,

3. the risk aversion.

The definition of volatility might differ depending on the point of view. 
Volatility usually refers to the variation observed in some phenomenon over 
time. Especially, statisticians and econometricians use volatility to describe the 
variability of the random component of time series. In our case, it is the volatility 
of return (payoff).

The amount of purchased assets is modifiable by decision makers as well as 
their attitude to the risk. On the other hand, the volatility evolves in time with only 
a small effect of some individual; therefore it is necessary to find a correct way to 
measure it. One approach is to model the evolution of volatility deterministically, 
i.e. through the (G)ARCH models. After the groundbreaking papers of Engle [4] and 

2  Let  and  to be random variables, then:

3 Let  and  to be continuous, differentiable and jointly normally distributed 
random variables, then:

little use in applied work mostly due to the lack of standard software package 
implementation.  

We have chosen to apply this symmetric game on bitcoin. Bitcoin is a 
decentralized digital currency without a central bank or administrator. During 
the last two years, bitcoin was able to reach the high approximately at $19,345 
and the low at $2,559, which suggests strong fluctuation and ergo volatility 
analysis is worth to apply.  

Being able to analyse historical development of volatility as well as to 
create accurate forecasts are crucial for risk management, portfolio selections 
and pricing financial instruments. The paper uses deterministic and 
probabilistic approach to Bitcoin volatility analysis. In the following section 
we present models and estimation methods, in the third chapter our empirical 
results are shown and the last chapter concludes.  
2.   Methodology 

We describe fGARCH model in which all relevant information is 
observed and the model is correctly specified. The volatility is known, or 
predetermined, as of time 𝑡𝑡 − 1, and stochastic volatility models, if some 
relevant information is not observable, then it is possible to exploit a genuine 
subset of the full information set. Under this scenario, the true conditional 
variance will be unobservable, even under correct model specification and the 
volatility process becomes genuinely latent. 
2.1  Stochastic volatility (SV) model 

Let 𝒚𝒚 = (𝑦𝑦1, 𝑦𝑦2 … , 𝑦𝑦𝑛𝑛)𝑇𝑇 be a vector of returns with zero mean. Each return 
observation is assumed to have its intrinsic contemporaneous variance 𝑒𝑒ℎ𝑡𝑡  
therefore relaxing the homoskedasticity assumption. This variance does not 
vary unrestrictedly over time, it follows an autoregressive process of the first 
order. Following Kim et al. [10] SV centered parametrization is given: 

 𝑦𝑦𝑡𝑡|ℎ𝑡𝑡~𝒩𝒩(0, exp ℎ𝑡𝑡), (6) 

 ℎ𝑡𝑡|ℎ𝑡𝑡−1, 𝜇𝜇, 𝜙𝜙, 𝜎𝜎𝜂𝜂~𝒩𝒩(𝜇𝜇 + 𝜙𝜙(ℎ𝑡𝑡−1 − 𝜇𝜇), 𝜎𝜎𝜂𝜂), (7) 

 ℎ0|𝜇𝜇, 𝜙𝜙, 𝜎𝜎𝜂𝜂~𝒩𝒩(𝜇𝜇, 𝜎𝜎𝜂𝜂 (1 − 𝜙𝜙2)⁄ ), (8) 

where 𝜇𝜇 is the level of log-variance,𝜙𝜙 is the persistence of log variance 
and 𝜎𝜎𝜂𝜂 is the volatility of log-variance. We refer to 𝜽𝜽 = (𝜇𝜇, 𝜙𝜙, 𝜎𝜎𝜂𝜂)

𝑇𝑇
 as the 

vector of parameters. The process appearing in (6) - (8)𝒉𝒉 = (ℎ1, ℎ2 … , ℎ𝑛𝑛)𝑇𝑇 
is the latent time-varying volatility process (log-variance process). 

The prior distribution of 𝜽𝜽needs to be specified before setting the model. 
We choose independent components for each parameter, i.e. 𝑝𝑝(𝜽𝜽) =
𝑝𝑝(𝜇𝜇)𝑝𝑝(𝜙𝜙)𝑝𝑝(𝜎𝜎𝜂𝜂). The level 𝜇𝜇 ∈ ℝ has the usual normal prior distribution 
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𝜇𝜇~𝒩𝒩(𝑏𝑏𝜇𝜇, 𝐵𝐵𝜇𝜇), e.g. for daily log-returns 𝑏𝑏𝜇𝜇 = 0, 𝐵𝐵𝜇𝜇 ≥ 100. A common 
strategy is to choose a vague prior; however, if one prefers to use slightly 
informative priors (to avoid outliers), one must pay attention to whether log-
returns or percentage log-returns are analyzed. According to Kastner [9], 
exact choice is usually not very significant.  

The persistence parameter 𝜙𝜙 is assumed to have beta distribution 
(𝜙𝜙 + 1) 2⁄ ~ℬ(𝑎𝑎0, 𝑏𝑏0). Clearly, the support of this distribution is the interval 
(−1,1), thus stationarity is guaranteed. For financial datasets with not too 
many observations (𝑛𝑛 ≤ 1000) the choice of hyperparameters 𝑎𝑎0, 𝑏𝑏0 can 
influence the shape of posterior distribution. Therefore, it may be useful to 
check the expected value and standard deviation of the persistence parameter 
given by Kastner [9]: 

 E[𝜙𝜙] = 2𝑎𝑎0
𝑎𝑎0 + 𝑏𝑏0

− 1, (9) 

 Var(𝜙𝜙) = 4𝑎𝑎0𝑏𝑏0
(𝑎𝑎0 + 𝑏𝑏0)2(𝑎𝑎0 + 𝑏𝑏0 + 1). (10) 

It follows that expectation of the persistence parameter is positive if and 
only if 𝑎𝑎0 > 𝑏𝑏0, negative if and only if 𝑎𝑎0 < 𝑏𝑏0. In special case 𝑎𝑎0 = 𝑏𝑏0 = 1, 
the uniform distribution arises. The variance decreases with larger values of 
𝑎𝑎0, 𝑏𝑏0. 

Lastly, for the volatility 𝜎𝜎𝜂𝜂 ∈ ℝ+ we choose 𝜎𝜎𝜂𝜂2~𝐵𝐵𝜎𝜎𝜂𝜂 × 𝜒𝜒12 =
𝒢𝒢 (1 2⁄ , 1 2⁄ 𝐵𝐵𝜎𝜎𝜂𝜂) which is motivated by Frühwirth–Schnatter and Wagner 

[5] who equivalently impose the prior of ±√𝜎𝜎𝜂𝜂2 to follow a centered normal 

distribution, i.e. ±√𝜎𝜎𝜂𝜂2~𝒩𝒩 (0, 𝐵𝐵𝜎𝜎𝜂𝜂). The choice of hyperparameter 𝐵𝐵𝜎𝜎𝜂𝜂 turns 

out to be of minor influence as long as it is not set too small. 
There are few methods to estimate parameters. The first method is based 

on Metropolis-Hastings algorithm. (Early work on this method can be found 
in Hastings [6]. Early work on these methods can be found in Hastings [6]. 
The algorithm can use different proposals of Inverse-Gamma function, such 
as the one presented above by Frühwirth-Schnatter and Wagner [5]. 
Conditional on a past draw of the volatilities, we loop through time, proposing 
new 𝑒𝑒ℎ𝑡𝑡  and accept or reject them. Another method is based on the Kalman 
Filter. The AR(1)-SV model is a Gaussian non-linear state-space system. The 
method uses a Gaussian mixture approximation to the distribution of the error 
logarithm to turn the system into a linear, Gaussian one. One might also use 

a particle filter that uses an importance of sampling to sequentially construct 
weighted approximation to the sequence of posteriors. 
2.2   GARCH type models 

 2.2.1 Conditional mean equation 
The univariate GARCH specification allows to define dynamics for the 

conditional mean in terms of ARFIMAX model which may be formally 
defined as: 

 Φ(𝐿𝐿)(1 − 𝐿𝐿)𝑑𝑑(𝑦𝑦𝑡𝑡 − 𝜇𝜇𝑡𝑡) = Θ(𝐿𝐿)𝜀𝜀𝑡𝑡 (11) 

with the left-hand side denoting fractional AR specification and the right-
hand side the MA specification. 𝐿𝐿 is the lag operator, 𝑑𝑑is a fraction of long 
memory process and 𝜇𝜇𝑡𝑡 is defined as: 

 𝜇𝜇𝑡𝑡 = 𝜇𝜇 + ∑ 𝛿𝛿𝑖𝑖𝑥𝑥𝑖𝑖,𝑡𝑡
𝑚𝑚−𝑛𝑛

𝑖𝑖=1
+ ∑ 𝛿𝛿𝑖𝑖𝑥𝑥𝑖𝑖,𝑡𝑡𝜎𝜎𝑡𝑡

𝑚𝑚

𝑖𝑖=𝑚𝑚−𝑛𝑛+1
+ 𝜉𝜉𝜎𝜎𝑡𝑡𝑘𝑘, (12) 

where we allow 𝑚𝑚 regressors 𝑥𝑥𝑖𝑖,𝑡𝑡 of which 𝑛𝑛 may optionally be multiplied 
by the conditional standard deviation 𝜎𝜎𝑡𝑡. The term 𝜉𝜉𝜎𝜎𝑡𝑡𝑘𝑘  is referred as ARCH-
in-mean if 𝑘𝑘 = 1 conditional standard deviation is involved, if 𝑘𝑘 = 2 
conditional variance. 

 2.2.2 Conditional variance equation 
Bollerslev (1986) presented standard GARCH model written as: 

 𝜎𝜎𝑡𝑡2 = 𝜔𝜔 +∑𝜉𝜉𝑗𝑗𝑣𝑣𝑗𝑗,𝑡𝑡
𝑚𝑚

𝑗𝑗=1
+∑𝛼𝛼𝑗𝑗𝜀𝜀𝑡𝑡−𝑗𝑗2

𝑞𝑞

𝑗𝑗=1
+∑𝛽𝛽𝑗𝑗𝜎𝜎𝑡𝑡−𝑗𝑗2

𝑝𝑝

𝑗𝑗=1
 (13) 

where 𝜎𝜎𝑡𝑡2 is the conditional variance, 𝜔𝜔, 𝜉𝜉𝑗𝑗, 𝛼𝛼𝑗𝑗, 𝛽𝛽𝑗𝑗 the parameters and 𝜀𝜀𝑡𝑡2 
the residuals from the conditional mean. There are 𝑚𝑚 external regressors 𝑣𝑣𝑗𝑗,𝑡𝑡 
upon the analyst’s choice. 

One of the key features of the observed behavior of financial data which 
GARCH models capture is volatility clustering which may be quantified in 
the persistence parameter: 

 �̂�𝑃 = ∑𝛼𝛼𝑗𝑗
𝑞𝑞

𝑗𝑗=1
+∑𝛽𝛽𝑗𝑗

𝑝𝑝

𝑗𝑗=1
. (14) 

There are few methods to estimate parameters. The first method is based 
on Metropolis-Hastings algorithm. Early work on this method can be found 
in Hastings [6]. The algorithm can use different proposals of Inverse-Gamma 
function, such as the one presented above by Frühwirth-Schnatter and 
Wagner [5]. Conditional on a past draw of the volatilities, we loop through 
time, proposing new e^(h_t ) and accept or reject them. Another method is 
based on the Kalman Filter. The AR(1)-SV model is a Gaussian non-linear 
state-space system. The method uses a Gaussian mixture approximation 
to the distribution of the error logarithm to turn the system into a linear, 
Gaussian one. One might also use a particle filter that uses an importance of 
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a particle filter that uses an importance of sampling to sequentially construct 
weighted approximation to the sequence of posteriors. 
2.2   GARCH type models 

 2.2.1 Conditional mean equation 
The univariate GARCH specification allows to define dynamics for the 

conditional mean in terms of ARFIMAX model which may be formally 
defined as: 

 Φ(𝐿𝐿)(1 − 𝐿𝐿)𝑑𝑑(𝑦𝑦𝑡𝑡 − 𝜇𝜇𝑡𝑡) = Θ(𝐿𝐿)𝜀𝜀𝑡𝑡 (11) 

with the left-hand side denoting fractional AR specification and the right-
hand side the MA specification. 𝐿𝐿 is the lag operator, 𝑑𝑑is a fraction of long 
memory process and 𝜇𝜇𝑡𝑡 is defined as: 

 𝜇𝜇𝑡𝑡 = 𝜇𝜇 + ∑ 𝛿𝛿𝑖𝑖𝑥𝑥𝑖𝑖,𝑡𝑡
𝑚𝑚−𝑛𝑛

𝑖𝑖=1
+ ∑ 𝛿𝛿𝑖𝑖𝑥𝑥𝑖𝑖,𝑡𝑡𝜎𝜎𝑡𝑡

𝑚𝑚

𝑖𝑖=𝑚𝑚−𝑛𝑛+1
+ 𝜉𝜉𝜎𝜎𝑡𝑡𝑘𝑘, (12) 

where we allow 𝑚𝑚 regressors 𝑥𝑥𝑖𝑖,𝑡𝑡 of which 𝑛𝑛 may optionally be multiplied 
by the conditional standard deviation 𝜎𝜎𝑡𝑡. The term 𝜉𝜉𝜎𝜎𝑡𝑡𝑘𝑘  is referred as ARCH-
in-mean if 𝑘𝑘 = 1 conditional standard deviation is involved, if 𝑘𝑘 = 2 
conditional variance. 

 2.2.2 Conditional variance equation 
Bollerslev (1986) presented standard GARCH model written as: 

 𝜎𝜎𝑡𝑡2 = 𝜔𝜔 +∑𝜉𝜉𝑗𝑗𝑣𝑣𝑗𝑗,𝑡𝑡
𝑚𝑚

𝑗𝑗=1
+∑𝛼𝛼𝑗𝑗𝜀𝜀𝑡𝑡−𝑗𝑗2

𝑞𝑞

𝑗𝑗=1
+∑𝛽𝛽𝑗𝑗𝜎𝜎𝑡𝑡−𝑗𝑗2

𝑝𝑝

𝑗𝑗=1
 (13) 

where 𝜎𝜎𝑡𝑡2 is the conditional variance, 𝜔𝜔, 𝜉𝜉𝑗𝑗, 𝛼𝛼𝑗𝑗, 𝛽𝛽𝑗𝑗 the parameters and 𝜀𝜀𝑡𝑡2 
the residuals from the conditional mean. There are 𝑚𝑚 external regressors 𝑣𝑣𝑗𝑗,𝑡𝑡 
upon the analyst’s choice. 

One of the key features of the observed behavior of financial data which 
GARCH models capture is volatility clustering which may be quantified in 
the persistence parameter: 

 �̂�𝑃 = ∑𝛼𝛼𝑗𝑗
𝑞𝑞

𝑗𝑗=1
+∑𝛽𝛽𝑗𝑗

𝑝𝑝

𝑗𝑗=1
. (14) 

sampling to sequentially construct weighted approximation to the sequence 
of posteriors.
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Related to this measure is the ‘half-life’(ℎ2𝑙𝑙) defined as the number of 
days it takes for half of the expected reversion back towards expected value 
of unconditional variance to occur: 

 ℎ2𝑙𝑙 = − ln 2
ln �̂�𝑃 . (15) 

In our analysis we use more complex model presented by Hentschel [7]. 
The family GARCH (fGARCH) model allows the decomposition of the 
residuals in the conditional variance equation to be driven by different factors 
for 𝑧𝑧𝑡𝑡 (white noise process) and 𝜎𝜎𝑡𝑡 and also allowing shifts and rotations in 
the news impact curve – the shift is the main source of asymmetry for small 
shocks and rotation drives large shocks. Model is defined as: 

𝜎𝜎𝑡𝑡𝜆𝜆 = (𝜔𝜔 +∑𝜉𝜉𝑗𝑗𝑣𝑣𝑗𝑗𝑡𝑡
𝑚𝑚

𝑗𝑗=1
)

+∑𝛼𝛼𝑗𝑗𝜎𝜎𝑡𝑡−𝑗𝑗𝜆𝜆 (|𝑧𝑧𝑡𝑡−𝑗𝑗 − 𝜂𝜂2𝑗𝑗| − 𝜂𝜂1𝑗𝑗(𝑧𝑧𝑡𝑡−𝑗𝑗 − 𝜂𝜂2𝑗𝑗))
𝛿𝛿

𝑞𝑞

𝑗𝑗=1

+∑𝛽𝛽𝑗𝑗𝜎𝜎𝑡𝑡−𝑗𝑗𝜆𝜆
𝑝𝑝

𝑗𝑗=1
 

(16) 

which is a Box-Cox transformation for the conditional standard deviation 
whose shape is determined by 𝜆𝜆, and the parameter 𝛿𝛿 transforms the absolute 
value function which it subject to rotations and shifts through 𝜂𝜂1𝑗𝑗, 𝜂𝜂2𝑗𝑗. Full 
fGARCH model presented by Hentschel implies 𝜆𝜆 = 𝛿𝛿. The persistence 
parameter: 

 �̂�𝑃 = ∑𝛽𝛽𝑗𝑗
𝑝𝑝

𝑗𝑗=1
+∑𝛼𝛼𝑗𝑗𝜅𝜅𝑗𝑗

𝑞𝑞

𝑗𝑗=1
 (17) 

where: 

 𝜅𝜅𝑗𝑗 = 𝐸𝐸 (|𝑧𝑧𝑡𝑡−𝑗𝑗 − 𝜂𝜂2𝑗𝑗| − 𝜂𝜂1𝑗𝑗(𝑧𝑧𝑡𝑡−𝑗𝑗 − 𝜂𝜂2𝑗𝑗))
𝛿𝛿
. (18) 

Then the half-life numeric can be computed by formula (15). 
3.  Empirical results 

The Bitcoin analysis has received much attention mainly due to its 
simplicity, transparency and increasing popularity. Bitcoin is probably the 

most successful and controversial cryptocurrency, representing about 65% of 
the total estimated cryptocurrency capitalization [12]. 

The daily closing prices of Bitcoins during the period July 23rd2017 to 
June 22nd2019 were retrieved from www.stooq.com [13]. Our analysis is 
realized in RStudio. The evolution of prices and log-returns (natural 
logarithm of the ratio of two consecutive prices) are presented in Figure 1 and 
summary statistics in Table 1. 

Figure 1 
Time development of Bitcoin prices (p) and log-returns (r) 

 
Source: author’s calculations 

Table 1 
Summary statistics of Bitcoin prices (p) and log-returns (r) 

Source: author’s calculations  
Notes: the variation coefficient (coef. var) is defined as the standard deviation 
divided by the mean and *** indicates the rejection of the null hypotheses at 
the 1% level 

From Table 1 can be easily seen that average return is equal to 0.19 % 
with a standard deviation of 0.0442. The variation coefficient allows investors 
to determine how much volatility is assumed in comparison to the amount of 
return expected from investments. The lower value is, the better risk-return 
trade-off. According to the Augumented Dickey-Fuller (ADF) test we can 
reject null hypotheses in case of returns, hence, stationarity is guaranteed.  
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choice matters. We chose them so the expectation of persistence is relatively 
close to 1. Using Monte-Carlo Markov Chain estimation and presented prior 
distribution, we get following posterior moments: 

 
E[𝜇𝜇] = −6,769, 
E[𝜙𝜙] = 0.915, 
E[𝜎𝜎𝜂𝜂2] = 0.242, 

SD(𝜇𝜇) = 0.251; 
SD(𝜙𝜙) = 0.029; 
SD(𝜎𝜎𝜂𝜂2) = 0.087. 

The estimated volatility is presented in Figure 3 which represents 
probabilistic approach in defining the volatility, to be more precise, it is an 
empirical 50 % posterior quantile distribution of 100exp(ℎ𝑡𝑡 2⁄ ) over time. 

Figure 3 
Stochastic volatility development  

 
Source: author’s calculations 

In case of deterministic approach, we examine fGARCH model. In the 
first step, we define conditional mean equation in the form of ARFIMAX 
using autocorrelation, partial-autocorrelation functions and Ljung-Box Q test. 
The results for chosen lags are presented in Table 2, including Engle ARCH 
test. 

Table 2 
Statistics for conditional mean equation 

 Q(1) Q(200) Q2(1) Q2(200) ARCH 
r 0.4025 210.64 21.59*** 403.06*** 22.11*** 

Source: author’s calculations 
Notes: *** indicates the rejection of the null hypotheses at the 1 % level and Q2 stands for the squared 
residuals 

Based on the Ljung-Box Q test, we use level conditional mean equation. 
We modify fGARCH and parameters are estimated assuming generalized 
error distribution. The form of the estimated model is: 
 𝜇𝜇𝑡𝑡 = 0.0011,  

 
𝜎𝜎𝑡𝑡2.49 = 0.126𝜎𝜎𝑡𝑡−12.49(|𝑧𝑧𝑡𝑡−1 + 2.931|

− 0.691(𝑧𝑧𝑡𝑡−1 + 2.9309))2.49 + 0.873𝜎𝜎𝑡𝑡−12.49. 
 

All estimated parameters are statistically significant. The persistence 
parameter has the value 0.999 which corresponds to our assumption in SV 
model. The volatility development is presented in Figure 4. 

For completeness we use a thirty-day historical volatility as a benchmark, 
the time evolution is presented in Figure 5. For easier comparison, we involve 
some basic statistics in Table 3. 

Figure 4  
fGARCH volatility development  

 
Source: author’s calculations 

Figure 5  
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 𝜇𝜇𝑡𝑡 = 0.0011,   

 𝜎𝜎𝑡𝑡
2.49 = 0.126𝜎𝜎𝑡𝑡−1

2.49(|𝑧𝑧𝑡𝑡−1 + 2.931| − 0.691(𝑧𝑧𝑡𝑡−1 + 2.9309))2.49 + 0.873𝜎𝜎𝑡𝑡−1
2.49.  
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30-days historical volatility 
 

 
Source: author’s calculations 

Table 3 
Summary statistics of volatilities 

 Mean Median Min Max Std.dev. Coef. var 
sv 0.0376 0.0346 0.0074 0.1008 0.0178 0.4716 
fgarch 0.0424 0.0409 0.0130 0.0805 0.0155 0.3650 
30dvol 0.0409 0.0378 0.0107 0.0829 0.0162 0.3948 

Source: author’s calculations 

If we use 30-days volatility as a benchmark, both models have tendency 
to underestimate risk. If we use different quantile in SV model (for example 
95%), it would lead to a different conclusion. 

Using either way, the highest point was found in all models the same in 
December 2017. They also pointed out the similar decreasing and increasing 
tendencies. For better assessment we also include 30-days forecast in Figure 6. 
 
  

Figure 6 
30-day volatility forecast 

 
Source: author’s calculations 

Based on mean absolute percentage error (MAPE), fGARCH model 
seems to be better matching historical volatility. Deterministic approach 
appears to be handling even forecasting somehow better. MAPE results are 
presented in Table 4 (30-days historical volatility is used as a benchmark).  

Table 4 
Summary statistics of volatilities 

MAPE historical forecast 
sv 0.2656 0.3069 
fgarch 0.1727 0.2124 

Source: author’s calculations 

 4. Conclusion 
Bitcoin is primarily used for investment purposes; hence volatility 

analysis is of high importance. This paper investigated the ability of 
probabilistic and deterministic modelling. We found evidence that optimal 
model in terms of MAPE is fGARCH, although, stochastic approach allows 
different quantiles and different autoregression scheme, then different 
conclusions might come up. 

Bitcoin is an asset which creates possibilities for stakeholders with 
regards to risk diversion and portfolio analysis. Hence, it can be a useful to 
investors to make more informed decision. 
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