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FLEXIBLE REGRESSION MODELLING OF THE 
PURE PREMIUM USING GENERALIZED ADDITIVE 

MODELS WITH ISOTROPIC SMOOTHING
MAREK STREŽO1

Flexibilné regresné modelovanie rizikového poistného pomocou 
zovšeobecnených aditívnych modelov s isotrópnym vyhladením. 

Abstract: In case of large number of independent variables mainly in 
insurance, many non-parametric methods do not perform well. The widely 
used Generalized Additive Model (GAM) is a flexible technique in which the 
usual linear relationships between the response and predictor variables are 
replaced by non-linear smooth. These semi-parametric models permit the 
response probability distribution to be a member of the exponential family 
of distributions with robust extensions of Logit, Poisson, Negative Binomial 
and other Generalized Linear Models. GAMs are represented using penalized 
regression splines and are estimated by penalized regression methods. Cross 
validation is using for estimation the degree of smoothness for the unknown 
functions in the linear predictor. The GAMs allow us to build a regression 
surface as a sum of lower-dimensional non-parametric term circumventing the 
curse of dimensionality. This paper discusses the non-life insurance pricing 
context in which this technique has been developed and several GAMs are 
compared, where the best model is selected using AIC, GAM UBRE score, 
deviations and explained deviation.
Keywords: GAMs models, Smoothing splines, UBRE/GCV score, Pure 
Premium
JEL Classification: C10, C21, G22

1. Introduction
Every non-life insurance pricing involves problem with continuous 

rating variables, like the age of the policyholder or the weight of the insured 
vehicle. In the Generalized Linear Model (GLM), continuous rating variables 
are categorized into intervals and all values within an interval are treated 
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as identical. This method has advantage of being simple and often works 
well enough. However, an obvious disadvantage of categorization is that 
the premium for two policies with different but close values for the rating 
variable may get significantly different premiums if the values happen to 
belong to different intervals. Also, finding a good subdivision into intervals 
can be time consuming and tedious. The intervals must be large enough to 
achieve good precision of the price relativities, but at the same time they 
have to be small if the effect of the rating variable varies much. Sometimes 
both of these requirements cannot be met. With this in mind, an alternative 
modeling approach can be used. Hence, we introduce Generalized Additive 
Models (GAMs), which extend possibilities of GLMs by using splines as 
reparameterization tool. They were first proposed by Hastie and Tibshirani 
[6]. The difference is at the level of the linear predictor. 

There exist several possible approaches that go under the name of 
smoothing splines. It utilizes results from the theory of splines, i.e. piecewise 
polynomials, which have their origin in the field of numerical analysis. [10] 
GAMs are suitable to study the behavior of the factors that influence the 
expected value of a response variable. They are especially useful when it is 
suspected that the relationship is not linear. On the other hand, since this is 
a nonparametric approach, GAMs let the data help choosing the functional 
forms (what is known as letting the data speak) and therefore allow going 
beyond the typical parametric relationship of a GLMs. However, GAMs 
are more complex and more difficult to interpret than GLMs. The classical 
references on these models are obviously Hastie and Tibshirani [5], where 
most of the explanations on the technical tools used in this paper can be found. 
Of course, it is also possible to use existing R packages, or SAS procedures 
for the application of GAMs to large databases. In the following sections, the 
data set used in our empirical application is presented and explained in detail.

1.1  Tariff Analysis
When an insurance company accepts new insurances or when the premiums 

of earlier accepted insurances have to be changed on renewal the company 
has to search for the factors that influence the premium and calculate the 
premium according to the values of these factors. A tariff is represented by 
a formula, by which the premium can be computed. The underlying work an 
actuary performs to obtain tariff is called a tariff analysis. The data material 
for a tariff analysis is historical data with information about policies and 
claims. Consequently, the pure premium is a product of the claim frequency 
and the claim severity. [10]

1.2 Rating Factors
Both claim severity and claim frequency vary between policies and can be 

estimated based on a set of a number of variables, the rating factors. A rating 
factor, also called as rating variable can be either continuous or categorical. 
In a tariff analysis, it is common to categorize continuous rating variables into 
intervals and to treat them as categorical rating variables. This is done to 
improve the significance of the statistical results. Policies within the same 
interval for each rating variable are said to belong to the same tariff cell and 
share the same premium. [10]

2. Isotropic smoothing – Thin plate regression splines

This section considers smooths of one or more variables, concretely Thin 
plate splines, in particular smooths that, in the multiple covariate case, 
produce identical predictions of the response variable under any rotation or 
reflection of the covariates. Our goal will be to model response variable as a 
smooth function of 𝑝𝑝 covariates 𝑓𝑓𝑥𝑥1,…,𝑥𝑥𝑝𝑝(𝑥𝑥1, … , 𝑥𝑥𝑝𝑝). This function is founded 
as a linear combination of some basis function, i.e. 

𝑓𝑓𝑥𝑥1,…,𝑥𝑥𝑝𝑝(𝑥𝑥1, … , 𝑥𝑥𝑝𝑝)

= ∑ 𝛽𝛽𝑖𝑖𝑏𝑏𝑖𝑖

𝑘𝑘

𝑖𝑖=1
(𝑥𝑥1, … , 𝑥𝑥𝑝𝑝),  (1)

where 𝛽𝛽𝑖𝑖 are unknown parameters. Consider the response variable satisfy 
following model as 

𝑌𝑌𝑖𝑖 = 𝑓𝑓𝑥𝑥1,…,𝑥𝑥𝑝𝑝(𝑥𝑥1𝑖𝑖, … , 𝑥𝑥𝑝𝑝𝑖𝑖) + 𝜀𝜀𝑖𝑖 ,   𝑖𝑖
= 1, … , 𝑛𝑛  (2)

and the 𝜀𝜀𝑖𝑖termsare independent random variables such that 𝔼𝔼(𝜀𝜀𝑖𝑖) = 0 and
𝔼𝔼(𝜀𝜀𝑖𝑖) = 𝜎𝜎2.With construction of splines of multiple predictor variables
ensues two main questions. First, we want to find the unknown basis functions 
𝑏𝑏1(𝑥𝑥1, … , 𝑥𝑥𝑝𝑝), … , 𝑏𝑏𝑘𝑘(𝑥𝑥1, … , 𝑥𝑥𝑝𝑝). The factor that affects how wiggly a GAM 
function can be is the number of basis functions that make up a smooth 
function. In general, we want to balance two things when fitting a nonlinear 
model. We want a model that captures the relationship by being close to the 
data, but we also want to avoid fitting our model to noise, or over-fitting. How 
well the GAM captures patterns in the data is measured by a term called 
likelihood. Its complexity, or how much the curve changes shape, is measured 
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by ‘wiggliness’. In Figure 1 we have plotted GAMs with 3, 7 and 12 basis 
functions all fit to the same data. 
 Figure 1 
Number of basis functions 𝒃𝒃𝒊𝒊 

 

 

 

 

 

Source: processed by the author using statistical program R, 2019 

As you can see, a smooth with a small number of basis functions is limited in 
its wiggliness, while one with many basis functions is capable of capturing 
finer patterns. 

Second, it is necessary to identify a penalty function measuring the 
“wiggliness” 𝐽𝐽𝑚𝑚𝑚𝑚(𝑓𝑓). Let 𝑝𝑝 is number of covariates and 𝑚𝑚 is a some-order 
derivation considered in penalties. Let 𝜈𝜈1, … , 𝜈𝜈𝑝𝑝 ∈ {0,1, … , 𝑝𝑝} [1]. Then the 
penalty function is defined as  

𝐽𝐽𝑚𝑚𝑚𝑚

= ∫ … ∫
ℜ𝑑𝑑

∑ 𝑚𝑚!
𝜈𝜈1! … 𝜈𝜈𝑚𝑚! ( 𝜕𝜕𝑚𝑚𝑓𝑓

𝜕𝜕𝑥𝑥1
𝜈𝜈1 … 𝜕𝜕𝑥𝑥𝑚𝑚

𝜈𝜈𝑑𝑑)
2

d𝑥𝑥1
𝜈𝜈1+⋯+𝜈𝜈𝑑𝑑=𝑚𝑚

… d𝑥𝑥𝑚𝑚.                                           (3) 

 
Thin-plane splines were constructed directly from basic requirements for 
model of smoothing splines. 𝜆𝜆 is a smoothing parameter and 
𝐱𝐱 = (𝑥𝑥1, … , 𝑥𝑥𝑝𝑝)T

is a vector of covariates. Further progress is only possible if 
𝑚𝑚 is chosen as 2𝑚𝑚 < 𝑝𝑝, and in fact for ‘visually smooth’ results it is 
preferable that 2𝑚𝑚 < 𝑝𝑝 + 1.  
Subject to the first of these restrictions, it can be shown that the function 
minimizing ∑ (𝑦𝑦𝑖𝑖 − 𝑓𝑓(𝐱𝐱𝑖𝑖))2 + 𝜆𝜆𝐽𝐽𝑚𝑚𝑚𝑚(𝑓𝑓)𝑛𝑛

𝑖𝑖=1  has the form 

𝑓𝑓(𝐱𝐱)

=∑𝛿𝛿𝑖𝑖𝜂𝜂𝑚𝑚𝑚𝑚(‖𝐱𝐱 − 𝐱𝐱𝐢𝐢‖)
𝑛𝑛

𝑖𝑖=1

+∑𝛼𝛼𝑗𝑗𝜙𝜙𝑗𝑗(𝐱𝐱)
𝑀𝑀

𝑗𝑗=1
,  (4) 

where 𝜶𝜶 and 𝜹𝜹are vectors of unknown parameters to be estimated. Vector 
𝜹𝜹 has also applied that                 𝐓𝐓𝐓𝐓𝛅𝛅 = 𝟎𝟎, where  𝑇𝑇𝑖𝑖𝑗𝑗 = 𝜙𝜙𝑖𝑖𝑗𝑗(𝑥𝑥𝑗𝑗) [2]. The

function 𝜙𝜙1, … , 𝜙𝜙𝑀𝑀, where 𝑀𝑀 = (𝑚𝑚 + 𝑑𝑑 − 1
𝑑𝑑 ) are linearly independent 

polynomials spanning the space of polynomials in ℜ𝑚𝑚 of degree less than 𝑚𝑚.
Linear cover 𝜙𝜙𝑖𝑖 span the space of function, where 𝐽𝐽𝑚𝑚𝑚𝑚 = 0. Basis functions 
used in (7) are defined as 

𝜂𝜂𝑚𝑚𝑚𝑚(𝑟𝑟)

=

{ 
 
  

(−1)𝑚𝑚+1+𝑚𝑚/2
22𝑚𝑚−1𝜋𝜋𝑚𝑚/2(𝑚𝑚 − 1)! (𝑚𝑚 − 𝑑𝑑/2)! 𝑟𝑟

2𝑚𝑚−𝑚𝑚log(𝑟𝑟),    𝑑𝑑 is even

Γ (𝑚𝑚2 − 𝑚𝑚)
22𝑚𝑚𝜋𝜋𝑚𝑚/2(𝑚𝑚 − 1)!  ,      𝑑𝑑 is odd.

 (5) 

Now defining matrix 𝐄𝐄𝑛𝑛×𝑛𝑛 evaluated basis factors by 
 𝐸𝐸𝑖𝑖𝑗𝑗 ≡ 𝜂𝜂𝑚𝑚𝑚𝑚(‖𝐱𝐱𝐢𝐢 − 𝐱𝐱𝐣𝐣‖) . Then the matrix of evaluated basis functions 𝐁𝐁for 

Thin-plate splines is defined as 𝐁𝐁 = (𝐓𝐓  𝐄𝐄).Vector of unknown parameters 𝜷𝜷 
is defined as 𝛽𝛽 = (𝛼𝛼T, 𝛿𝛿T)T. Under the condition  𝐓𝐓𝐓𝐓𝛅𝛅 = 𝟎𝟎 results

𝐽𝐽𝑚𝑚𝑚𝑚 = (∑𝛿𝛿𝑖𝑖𝜂𝜂𝑚𝑚𝑚𝑚(‖𝐱𝐱 − 𝐱𝐱𝒊𝒊‖)
𝑛𝑛

𝑖𝑖=1
)

=∑∑𝜂𝜂𝑚𝑚𝑚𝑚(‖𝐱𝐱
𝑛𝑛

𝑗𝑗=1

𝑛𝑛

𝑖𝑖=1
− 𝐱𝐱𝒊𝒊‖).      (6) 
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4 
 

measured by ‘wiggliness’. In Figure 1 we have plotted GAMs with 3, 7 and 12 basis functions 

all fit to the same data. 

 

Figure 1 

Number of basis functions 𝒃𝒃𝒊𝒊 

 

 

 

 

 

 

Source: processed by the author using statistical program R, 2019 

As you can see, a smooth with a small number of basis functions is limited in its wiggliness, 

while one with many basis functions is capable of capturing finer patterns. 

Second, it is necessary to identify a penalty function measuring the “wiggliness” 𝐽𝐽𝑚𝑚𝑚𝑚(𝑓𝑓). 

Let 𝑝𝑝 is number of covariates and 𝑚𝑚 is a some-order derivation considered in penalties. Let 

𝜈𝜈1, … , 𝜈𝜈𝑝𝑝 ∈ {0,1, … , 𝑝𝑝} [1]. Then the penalty function is defined as  

𝐽𝐽𝑚𝑚𝑚𝑚 = ∫ … ∫
ℜ𝑑𝑑

∑ 𝑚𝑚!
𝜈𝜈1! … 𝜈𝜈𝑚𝑚! ( 𝜕𝜕𝑚𝑚𝑓𝑓

𝜕𝜕𝑥𝑥1
𝜈𝜈1 … 𝜕𝜕𝑥𝑥𝑚𝑚

𝜈𝜈𝑑𝑑)
2

d𝑥𝑥1
𝜈𝜈1+⋯+𝜈𝜈𝑑𝑑=𝑚𝑚

… d𝑥𝑥𝑚𝑚.                                (3) 

Thin-plane splines were constructed directly from basic requirements for model of smoothing 

splines. 𝜆𝜆 is a smoothing parameter and 𝐱𝐱 = (𝑥𝑥1, … , 𝑥𝑥𝑝𝑝)T
is a vector of covariates. Further 

progress is only possible if 𝑚𝑚 is chosen as 2𝑚𝑚 < 𝑝𝑝, and in fact for ‘visually smooth’ results it 

is preferable that 2𝑚𝑚 < 𝑝𝑝 + 1.  

Subject to the first of these restrictions, it can be shown that the function minimizing 

∑ (𝑦𝑦𝑖𝑖 − 𝑓𝑓(𝐱𝐱𝑖𝑖))2 + 𝜆𝜆𝐽𝐽𝑚𝑚𝑚𝑚(𝑓𝑓)𝑛𝑛
𝑖𝑖=1  has the form 

𝑓𝑓(𝐱𝐱) = ∑ 𝛿𝛿𝑖𝑖𝜂𝜂𝑚𝑚𝑚𝑚(‖𝐱𝐱 − 𝐱𝐱𝐢𝐢‖)
𝑛𝑛

𝑖𝑖=1
+ ∑ 𝛼𝛼𝑗𝑗𝜙𝜙𝑗𝑗(𝐱𝐱)

𝑀𝑀

𝑗𝑗=1
,                                                                                   (4) 

Since, the basis functions 𝜙𝜙1(𝐱𝐱), … , 𝜙𝜙𝑀𝑀(𝐱𝐱), are not penalized, then from 
(6) can be defined the penalized matrix 𝐒𝐒 as  

𝐒𝐒 = (𝟎𝟎𝑴𝑴×𝑴𝑴
𝟎𝟎𝒏𝒏×𝑴𝑴

𝟎𝟎𝑴𝑴×𝒏𝒏
 𝐄𝐄𝒏𝒏×𝒏𝒏

). 

Unknown parameters of Thin-plate splines can be fitted by minimalize of 
penalized least squared as  

𝐒𝐒𝐒𝐒𝒑𝒑𝒑𝒑𝒏𝒏(𝜷𝜷) = (𝐘𝐘 − 𝐁𝐁𝜷𝜷)𝐓𝐓(𝐘𝐘 − 𝐁𝐁𝜷𝜷) + 𝜆𝜆𝜷𝜷T𝐒𝐒𝜷𝜷
= (𝐘𝐘 − 𝐁𝐁𝜷𝜷)𝐓𝐓(𝐘𝐘 − 𝐁𝐁𝜷𝜷) + 𝜆𝜆𝜹𝜹T𝐄𝐄𝐄𝐄,                                          (7) 

under the condition 𝐓𝐓𝐓𝐓𝐄𝐄 = 𝟎𝟎. 

As we have shown above, the smoothing parameter 𝜆𝜆 controls the balance. 
Here are plots of three GAMs with different smoothing, or lambda values. 
One on the left smooths too much, creating a straight line through curved data. 
The one in the middle smooths too little, fitting noise rather than the trend. 
The one on the right is just right. It is lambda value balances over-and-under-
fitting, see Figure 2. 

Figure 2 

Choosing the right smoothing parameter 𝝀𝝀 

 
 

 
 
 
 
 
 
Source: processed by the author using statistical program R, 2019 

Normally when we fit a model with package mgcv and gam() function, we 
let this package does the work of selecting a smoothing parameter. However, 
we can fix the smoothing parameter to a value of our choosing. Instead if we 
allow R to do this work for us, the mgcv package offers several different 
methods for selecting smoothing parameters. I, and most GAM experts, 
strongly recommend that you fit models with the REML, or “Restricted 
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𝑓𝑓(𝐱𝐱)

=∑𝛿𝛿𝑖𝑖𝜂𝜂𝑚𝑚𝑚𝑚(‖𝐱𝐱 − 𝐱𝐱𝐢𝐢‖)
𝑛𝑛

𝑖𝑖=1

+∑𝛼𝛼𝑗𝑗𝜙𝜙𝑗𝑗(𝐱𝐱)
𝑀𝑀

𝑗𝑗=1
,  (4) 

where 𝜶𝜶 and 𝜹𝜹are vectors of unknown parameters to be estimated. Vector 
𝜹𝜹 has also applied that                 𝐓𝐓𝐓𝐓𝛅𝛅 = 𝟎𝟎, where  𝑇𝑇𝑖𝑖𝑗𝑗 = 𝜙𝜙𝑖𝑖𝑗𝑗(𝑥𝑥𝑗𝑗) [2]. The

function 𝜙𝜙1, … , 𝜙𝜙𝑀𝑀, where 𝑀𝑀 = (𝑚𝑚 + 𝑑𝑑 − 1
𝑑𝑑 ) are linearly independent 

polynomials spanning the space of polynomials in ℜ𝑚𝑚 of degree less than 𝑚𝑚.
Linear cover 𝜙𝜙𝑖𝑖 span the space of function, where 𝐽𝐽𝑚𝑚𝑚𝑚 = 0. Basis functions 
used in (7) are defined as 

𝜂𝜂𝑚𝑚𝑚𝑚(𝑟𝑟)

=

{ 
 
  

(−1)𝑚𝑚+1+𝑚𝑚/2
22𝑚𝑚−1𝜋𝜋𝑚𝑚/2(𝑚𝑚 − 1)! (𝑚𝑚 − 𝑑𝑑/2)! 𝑟𝑟

2𝑚𝑚−𝑚𝑚log(𝑟𝑟),    𝑑𝑑 is even

Γ (𝑚𝑚2 − 𝑚𝑚)
22𝑚𝑚𝜋𝜋𝑚𝑚/2(𝑚𝑚 − 1)!  ,      𝑑𝑑 is odd.

 (5) 

Now defining matrix 𝐄𝐄𝑛𝑛×𝑛𝑛 evaluated basis factors by 
 𝐸𝐸𝑖𝑖𝑗𝑗 ≡ 𝜂𝜂𝑚𝑚𝑚𝑚(‖𝐱𝐱𝐢𝐢 − 𝐱𝐱𝐣𝐣‖) . Then the matrix of evaluated basis functions 𝐁𝐁for 

Thin-plate splines is defined as 𝐁𝐁 = (𝐓𝐓  𝐄𝐄).Vector of unknown parameters 𝜷𝜷 
is defined as 𝛽𝛽 = (𝛼𝛼T, 𝛿𝛿T)T. Under the condition  𝐓𝐓𝐓𝐓𝛅𝛅 = 𝟎𝟎 results

𝐽𝐽𝑚𝑚𝑚𝑚 = (∑𝛿𝛿𝑖𝑖𝜂𝜂𝑚𝑚𝑚𝑚(‖𝐱𝐱 − 𝐱𝐱𝒊𝒊‖)
𝑛𝑛

𝑖𝑖=1
)

=∑∑𝜂𝜂𝑚𝑚𝑚𝑚(‖𝐱𝐱
𝑛𝑛

𝑗𝑗=1

𝑛𝑛

𝑖𝑖=1
− 𝐱𝐱𝒊𝒊‖).      (6) 
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𝑓𝑓(𝐱𝐱) =∑𝛿𝛿𝑖𝑖𝜂𝜂𝑚𝑚𝑚𝑚(‖𝐱𝐱 − 𝐱𝐱𝐢𝐢‖)
𝑛𝑛

𝑖𝑖=1
+∑𝛼𝛼𝑗𝑗𝜙𝜙𝑗𝑗(𝐱𝐱)

𝑀𝑀

𝑗𝑗=1
,                                                                                   (4) 

where 𝜶𝜶 and 𝜹𝜹are vectors of unknown parameters to be estimated. Vector 𝜹𝜹 has also applied 

that 𝐓𝐓𝐓𝐓𝛅𝛅 = 𝟎𝟎, where𝑇𝑇𝑖𝑖𝑗𝑗 = 𝜙𝜙𝑖𝑖𝑗𝑗(𝑥𝑥𝑗𝑗) [2]. The function𝜙𝜙1,… , 𝜙𝜙𝑀𝑀, where 𝑀𝑀 = (𝑚𝑚 + 𝑑𝑑 − 1
𝑑𝑑 ) are 

linearly independent polynomials spanning the space of polynomials in ℜ𝑚𝑚 of degree less than 

𝑚𝑚. Linear cover 𝜙𝜙𝑖𝑖 span the space of function, where 𝐽𝐽𝑚𝑚𝑚𝑚 = 0. Basis functions used in (7) are 

defined as 

𝜂𝜂𝑚𝑚𝑚𝑚(𝑟𝑟) =

{ 
 
  

(−1)𝑚𝑚+1+𝑚𝑚/2
22𝑚𝑚−1𝜋𝜋𝑚𝑚/2(𝑚𝑚 − 1)! (𝑚𝑚 − 𝑑𝑑/2)! 𝑟𝑟

2𝑚𝑚−𝑚𝑚log(𝑟𝑟),    𝑑𝑑 is even

Γ (𝑚𝑚2 − 𝑚𝑚)
22𝑚𝑚𝜋𝜋𝑚𝑚/2(𝑚𝑚 − 1)!                                                   ,      𝑑𝑑 is odd.

                                 (5) 

Now defining matrix 𝐄𝐄𝑛𝑛×𝑛𝑛 evaluated basis factors by 𝐸𝐸𝑖𝑖𝑗𝑗 ≡ 𝜂𝜂𝑚𝑚𝑚𝑚(‖𝐱𝐱𝐢𝐢 − 𝐱𝐱𝐣𝐣‖) . Then the 

matrix of evaluated basis functions 𝐁𝐁for Thin-plate splines is defined as 𝐁𝐁 = (𝐓𝐓  𝐄𝐄).Vector of 

unknown parameters 𝜷𝜷 is defined as 𝛽𝛽 = (𝛼𝛼T, 𝛿𝛿T)T. Under the condition  𝐓𝐓𝐓𝐓𝛅𝛅 = 𝟎𝟎results 

𝐽𝐽𝑚𝑚𝑚𝑚 = (∑𝛿𝛿𝑖𝑖𝜂𝜂𝑚𝑚𝑚𝑚(‖𝐱𝐱 − 𝐱𝐱𝒊𝒊‖)
𝑛𝑛

𝑖𝑖=1
) =∑∑𝜂𝜂𝑚𝑚𝑚𝑚(‖𝐱𝐱 − 𝐱𝐱𝒊𝒊‖)

𝑛𝑛

𝑗𝑗=1

𝑛𝑛

𝑖𝑖=1
.                                                           (6) 

𝐒𝐒 = (𝟎𝟎𝑴𝑴×𝑴𝑴𝟎𝟎𝒏𝒏×𝑴𝑴
𝟎𝟎𝑴𝑴×𝒏𝒏
 𝐄𝐄𝒏𝒏×𝒏𝒏

). 

 

𝐒𝐒𝐒𝐒𝒑𝒑𝒑𝒑𝒏𝒏(𝜷𝜷) = (𝐘𝐘 − 𝐁𝐁𝜷𝜷)𝐓𝐓(𝐘𝐘 − 𝐁𝐁𝜷𝜷) + 𝜆𝜆𝜷𝜷T𝐒𝐒𝜷𝜷 = (𝐘𝐘 − 𝐁𝐁𝜷𝜷)𝐓𝐓(𝐘𝐘 − 𝐁𝐁𝜷𝜷) + 𝜆𝜆𝜹𝜹T𝐄𝐄𝛅𝛅,                     (7) 
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𝑓𝑓(𝐱𝐱) =∑𝛿𝛿𝑖𝑖𝜂𝜂𝑚𝑚𝑚𝑚(‖𝐱𝐱 − 𝐱𝐱𝐢𝐢‖)
𝑛𝑛

𝑖𝑖=1
+∑𝛼𝛼𝑗𝑗𝜙𝜙𝑗𝑗(𝐱𝐱)

𝑀𝑀

𝑗𝑗=1
,                                                                                   (4) 

where 𝜶𝜶 and 𝜹𝜹are vectors of unknown parameters to be estimated. Vector 𝜹𝜹 has also applied 

that 𝐓𝐓𝐓𝐓𝛅𝛅 = 𝟎𝟎, where𝑇𝑇𝑖𝑖𝑗𝑗 = 𝜙𝜙𝑖𝑖𝑗𝑗(𝑥𝑥𝑗𝑗) [2]. The function𝜙𝜙1,… , 𝜙𝜙𝑀𝑀, where 𝑀𝑀 = (𝑚𝑚 + 𝑑𝑑 − 1
𝑑𝑑 ) are 

linearly independent polynomials spanning the space of polynomials in ℜ𝑚𝑚 of degree less than 

𝑚𝑚. Linear cover 𝜙𝜙𝑖𝑖 span the space of function, where 𝐽𝐽𝑚𝑚𝑚𝑚 = 0. Basis functions used in (7) are 

defined as 

𝜂𝜂𝑚𝑚𝑚𝑚(𝑟𝑟) =

{ 
 
  

(−1)𝑚𝑚+1+𝑚𝑚/2
22𝑚𝑚−1𝜋𝜋𝑚𝑚/2(𝑚𝑚 − 1)! (𝑚𝑚 − 𝑑𝑑/2)! 𝑟𝑟

2𝑚𝑚−𝑚𝑚log(𝑟𝑟),    𝑑𝑑 is even

Γ (𝑚𝑚2 − 𝑚𝑚)
22𝑚𝑚𝜋𝜋𝑚𝑚/2(𝑚𝑚 − 1)!                                                   ,      𝑑𝑑 is odd.

                                 (5) 

Now defining matrix 𝐄𝐄𝑛𝑛×𝑛𝑛 evaluated basis factors by 𝐸𝐸𝑖𝑖𝑗𝑗 ≡ 𝜂𝜂𝑚𝑚𝑚𝑚(‖𝐱𝐱𝐢𝐢 − 𝐱𝐱𝐣𝐣‖) . Then the 

matrix of evaluated basis functions 𝐁𝐁for Thin-plate splines is defined as 𝐁𝐁 = (𝐓𝐓  𝐄𝐄).Vector of 

unknown parameters 𝜷𝜷 is defined as 𝛽𝛽 = (𝛼𝛼T, 𝛿𝛿T)T. Under the condition  𝐓𝐓𝐓𝐓𝛅𝛅 = 𝟎𝟎results 

𝐽𝐽𝑚𝑚𝑚𝑚 = (∑𝛿𝛿𝑖𝑖𝜂𝜂𝑚𝑚𝑚𝑚(‖𝐱𝐱 − 𝐱𝐱𝒊𝒊‖)
𝑛𝑛

𝑖𝑖=1
) =∑∑𝜂𝜂𝑚𝑚𝑚𝑚(‖𝐱𝐱 − 𝐱𝐱𝒊𝒊‖)

𝑛𝑛

𝑗𝑗=1

𝑛𝑛

𝑖𝑖=1
.                                                           (6) 

𝐒𝐒 = (𝟎𝟎𝑴𝑴×𝑴𝑴𝟎𝟎𝒏𝒏×𝑴𝑴
𝟎𝟎𝑴𝑴×𝒏𝒏
 𝐄𝐄𝒏𝒏×𝒏𝒏

). 

 

𝐒𝐒𝐒𝐒𝒑𝒑𝒑𝒑𝒏𝒏(𝜷𝜷) = (𝐘𝐘 − 𝐁𝐁𝜷𝜷)𝐓𝐓(𝐘𝐘 − 𝐁𝐁𝜷𝜷) + 𝜆𝜆𝜷𝜷T𝐒𝐒𝜷𝜷 = (𝐘𝐘 − 𝐁𝐁𝜷𝜷)𝐓𝐓(𝐘𝐘 − 𝐁𝐁𝜷𝜷) + 𝜆𝜆𝜹𝜹T𝐄𝐄𝛅𝛅,                     (7) 
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𝑓𝑓(𝐱𝐱) =∑𝛿𝛿𝑖𝑖𝜂𝜂𝑚𝑚𝑚𝑚(‖𝐱𝐱 − 𝐱𝐱𝐢𝐢‖)
𝑛𝑛

𝑖𝑖=1
+∑𝛼𝛼𝑗𝑗𝜙𝜙𝑗𝑗(𝐱𝐱)

𝑀𝑀

𝑗𝑗=1
,                                                                                   (4) 

where 𝜶𝜶 and 𝜹𝜹are vectors of unknown parameters to be estimated. Vector 𝜹𝜹 has also applied 

that 𝐓𝐓𝐓𝐓𝛅𝛅 = 𝟎𝟎, where𝑇𝑇𝑖𝑖𝑗𝑗 = 𝜙𝜙𝑖𝑖𝑗𝑗(𝑥𝑥𝑗𝑗) [2]. The function𝜙𝜙1,… , 𝜙𝜙𝑀𝑀, where 𝑀𝑀 = (𝑚𝑚 + 𝑑𝑑 − 1
𝑑𝑑 ) are 

linearly independent polynomials spanning the space of polynomials in ℜ𝑚𝑚 of degree less than 

𝑚𝑚. Linear cover 𝜙𝜙𝑖𝑖 span the space of function, where 𝐽𝐽𝑚𝑚𝑚𝑚 = 0. Basis functions used in (7) are 

defined as 

𝜂𝜂𝑚𝑚𝑚𝑚(𝑟𝑟) =

{ 
 
  

(−1)𝑚𝑚+1+𝑚𝑚/2
22𝑚𝑚−1𝜋𝜋𝑚𝑚/2(𝑚𝑚 − 1)! (𝑚𝑚 − 𝑑𝑑/2)! 𝑟𝑟

2𝑚𝑚−𝑚𝑚log(𝑟𝑟),    𝑑𝑑 is even

Γ (𝑚𝑚2 − 𝑚𝑚)
22𝑚𝑚𝜋𝜋𝑚𝑚/2(𝑚𝑚 − 1)!                                                   ,      𝑑𝑑 is odd.

                                 (5) 

Now defining matrix 𝐄𝐄𝑛𝑛×𝑛𝑛 evaluated basis factors by 𝐸𝐸𝑖𝑖𝑗𝑗 ≡ 𝜂𝜂𝑚𝑚𝑚𝑚(‖𝐱𝐱𝐢𝐢 − 𝐱𝐱𝐣𝐣‖) . Then the 

matrix of evaluated basis functions 𝐁𝐁for Thin-plate splines is defined as 𝐁𝐁 = (𝐓𝐓  𝐄𝐄).Vector of 

unknown parameters 𝜷𝜷 is defined as 𝛽𝛽 = (𝛼𝛼T, 𝛿𝛿T)T. Under the condition  𝐓𝐓𝐓𝐓𝛅𝛅 = 𝟎𝟎results 

𝐽𝐽𝑚𝑚𝑚𝑚 = (∑𝛿𝛿𝑖𝑖𝜂𝜂𝑚𝑚𝑚𝑚(‖𝐱𝐱 − 𝐱𝐱𝒊𝒊‖)
𝑛𝑛

𝑖𝑖=1
) =∑∑𝜂𝜂𝑚𝑚𝑚𝑚(‖𝐱𝐱 − 𝐱𝐱𝒊𝒊‖)

𝑛𝑛

𝑗𝑗=1

𝑛𝑛

𝑖𝑖=1
.                                                           (6) 

𝐒𝐒 = (𝟎𝟎𝑴𝑴×𝑴𝑴𝟎𝟎𝒏𝒏×𝑴𝑴
𝟎𝟎𝑴𝑴×𝒏𝒏
 𝐄𝐄𝒏𝒏×𝒏𝒏

). 

 

𝐒𝐒𝐒𝐒𝒑𝒑𝒑𝒑𝒏𝒏(𝜷𝜷) = (𝐘𝐘 − 𝐁𝐁𝜷𝜷)𝐓𝐓(𝐘𝐘 − 𝐁𝐁𝜷𝜷) + 𝜆𝜆𝜷𝜷T𝐒𝐒𝜷𝜷 = (𝐘𝐘 − 𝐁𝐁𝜷𝜷)𝐓𝐓(𝐘𝐘 − 𝐁𝐁𝜷𝜷) + 𝜆𝜆𝜹𝜹T𝐄𝐄𝛅𝛅,                     (7) 
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𝑓𝑓(𝐱𝐱) =∑𝛿𝛿𝑖𝑖𝜂𝜂𝑚𝑚𝑚𝑚(‖𝐱𝐱 − 𝐱𝐱𝐢𝐢‖)
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𝑗𝑗=1
,                                                                                   (4) 

where 𝜶𝜶 and 𝜹𝜹are vectors of unknown parameters to be estimated. Vector 𝜹𝜹 has also applied 

that 𝐓𝐓𝐓𝐓𝛅𝛅 = 𝟎𝟎, where𝑇𝑇𝑖𝑖𝑗𝑗 = 𝜙𝜙𝑖𝑖𝑗𝑗(𝑥𝑥𝑗𝑗) [2]. The function𝜙𝜙1,… , 𝜙𝜙𝑀𝑀, where 𝑀𝑀 = (𝑚𝑚 + 𝑑𝑑 − 1
𝑑𝑑 ) are 

linearly independent polynomials spanning the space of polynomials in ℜ𝑚𝑚 of degree less than 

𝑚𝑚. Linear cover 𝜙𝜙𝑖𝑖 span the space of function, where 𝐽𝐽𝑚𝑚𝑚𝑚 = 0. Basis functions used in (7) are 

defined as 

𝜂𝜂𝑚𝑚𝑚𝑚(𝑟𝑟) =

{ 
 
  

(−1)𝑚𝑚+1+𝑚𝑚/2
22𝑚𝑚−1𝜋𝜋𝑚𝑚/2(𝑚𝑚 − 1)! (𝑚𝑚 − 𝑑𝑑/2)! 𝑟𝑟

2𝑚𝑚−𝑚𝑚log(𝑟𝑟),    𝑑𝑑 is even

Γ (𝑚𝑚2 − 𝑚𝑚)
22𝑚𝑚𝜋𝜋𝑚𝑚/2(𝑚𝑚 − 1)!                                                   ,      𝑑𝑑 is odd.

                                 (5) 

Now defining matrix 𝐄𝐄𝑛𝑛×𝑛𝑛 evaluated basis factors by 𝐸𝐸𝑖𝑖𝑗𝑗 ≡ 𝜂𝜂𝑚𝑚𝑚𝑚(‖𝐱𝐱𝐢𝐢 − 𝐱𝐱𝐣𝐣‖) . Then the 

matrix of evaluated basis functions 𝐁𝐁for Thin-plate splines is defined as 𝐁𝐁 = (𝐓𝐓  𝐄𝐄).Vector of 

unknown parameters 𝜷𝜷 is defined as 𝛽𝛽 = (𝛼𝛼T, 𝛿𝛿T)T. Under the condition  𝐓𝐓𝐓𝐓𝛅𝛅 = 𝟎𝟎results 

𝐽𝐽𝑚𝑚𝑚𝑚 = (∑𝛿𝛿𝑖𝑖𝜂𝜂𝑚𝑚𝑚𝑚(‖𝐱𝐱 − 𝐱𝐱𝒊𝒊‖)
𝑛𝑛

𝑖𝑖=1
) =∑∑𝜂𝜂𝑚𝑚𝑚𝑚(‖𝐱𝐱 − 𝐱𝐱𝒊𝒊‖)

𝑛𝑛

𝑗𝑗=1

𝑛𝑛

𝑖𝑖=1
.                                                           (6) 
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𝟎𝟎𝑴𝑴×𝒏𝒏
 𝐄𝐄𝒏𝒏×𝒏𝒏

). 
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that 𝐓𝐓𝐓𝐓𝛅𝛅 = 𝟎𝟎, where𝑇𝑇𝑖𝑖𝑗𝑗 = 𝜙𝜙𝑖𝑖𝑗𝑗(𝑥𝑥𝑗𝑗) [2]. The function𝜙𝜙1,… , 𝜙𝜙𝑀𝑀, where 𝑀𝑀 = (𝑚𝑚 + 𝑑𝑑 − 1
𝑑𝑑 ) are 

linearly independent polynomials spanning the space of polynomials in ℜ𝑚𝑚 of degree less than 

𝑚𝑚. Linear cover 𝜙𝜙𝑖𝑖 span the space of function, where 𝐽𝐽𝑚𝑚𝑚𝑚 = 0. Basis functions used in (7) are 

defined as 

𝜂𝜂𝑚𝑚𝑚𝑚(𝑟𝑟) =
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(−1)𝑚𝑚+1+𝑚𝑚/2
22𝑚𝑚−1𝜋𝜋𝑚𝑚/2(𝑚𝑚 − 1)! (𝑚𝑚 − 𝑑𝑑/2)! 𝑟𝑟

2𝑚𝑚−𝑚𝑚log(𝑟𝑟),    𝑑𝑑 is even

Γ (𝑚𝑚2 − 𝑚𝑚)
22𝑚𝑚𝜋𝜋𝑚𝑚/2(𝑚𝑚 − 1)!                                                   ,      𝑑𝑑 is odd.

                                 (5) 

Now defining matrix 𝐄𝐄𝑛𝑛×𝑛𝑛 evaluated basis factors by 𝐸𝐸𝑖𝑖𝑗𝑗 ≡ 𝜂𝜂𝑚𝑚𝑚𝑚(‖𝐱𝐱𝐢𝐢 − 𝐱𝐱𝐣𝐣‖) . Then the 

matrix of evaluated basis functions 𝐁𝐁for Thin-plate splines is defined as 𝐁𝐁 = (𝐓𝐓  𝐄𝐄).Vector of 

unknown parameters 𝜷𝜷 is defined as 𝛽𝛽 = (𝛼𝛼T, 𝛿𝛿T)T. Under the condition  𝐓𝐓𝐓𝐓𝛅𝛅 = 𝟎𝟎results 

𝐽𝐽𝑚𝑚𝑚𝑚 = (∑𝛿𝛿𝑖𝑖𝜂𝜂𝑚𝑚𝑚𝑚(‖𝐱𝐱 − 𝐱𝐱𝒊𝒊‖)
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𝑗𝑗=1

𝑛𝑛

𝑖𝑖=1
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𝐒𝐒 = (𝟎𝟎𝑴𝑴×𝑴𝑴𝟎𝟎𝒏𝒏×𝑴𝑴
𝟎𝟎𝑴𝑴×𝒏𝒏
 𝐄𝐄𝒏𝒏×𝒏𝒏
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where 𝜶𝜶 and 𝜹𝜹are vectors of unknown parameters to be estimated. Vector 𝜹𝜹 has also applied 

that 𝐓𝐓𝐓𝐓𝛅𝛅 = 𝟎𝟎, where𝑇𝑇𝑖𝑖𝑗𝑗 = 𝜙𝜙𝑖𝑖𝑗𝑗(𝑥𝑥𝑗𝑗) [2]. The function𝜙𝜙1,… , 𝜙𝜙𝑀𝑀, where 𝑀𝑀 = (𝑚𝑚 + 𝑑𝑑 − 1
𝑑𝑑 ) are 

linearly independent polynomials spanning the space of polynomials in ℜ𝑚𝑚 of degree less than 

𝑚𝑚. Linear cover 𝜙𝜙𝑖𝑖 span the space of function, where 𝐽𝐽𝑚𝑚𝑚𝑚 = 0. Basis functions used in (7) are 

defined as 
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22𝑚𝑚−1𝜋𝜋𝑚𝑚/2(𝑚𝑚 − 1)! (𝑚𝑚 − 𝑑𝑑/2)! 𝑟𝑟

2𝑚𝑚−𝑚𝑚log(𝑟𝑟),    𝑑𝑑 is even

Γ (𝑚𝑚2 − 𝑚𝑚)
22𝑚𝑚𝜋𝜋𝑚𝑚/2(𝑚𝑚 − 1)!                                                   ,      𝑑𝑑 is odd.

                                 (5) 

Now defining matrix 𝐄𝐄𝑛𝑛×𝑛𝑛 evaluated basis factors by 𝐸𝐸𝑖𝑖𝑗𝑗 ≡ 𝜂𝜂𝑚𝑚𝑚𝑚(‖𝐱𝐱𝐢𝐢 − 𝐱𝐱𝐣𝐣‖) . Then the 

matrix of evaluated basis functions 𝐁𝐁for Thin-plate splines is defined as 𝐁𝐁 = (𝐓𝐓  𝐄𝐄).Vector of 

unknown parameters 𝜷𝜷 is defined as 𝛽𝛽 = (𝛼𝛼T, 𝛿𝛿T)T. Under the condition  𝐓𝐓𝐓𝐓𝛅𝛅 = 𝟎𝟎results 

𝐽𝐽𝑚𝑚𝑚𝑚 = (∑𝛿𝛿𝑖𝑖𝜂𝜂𝑚𝑚𝑚𝑚(‖𝐱𝐱 − 𝐱𝐱𝒊𝒊‖)
𝑛𝑛

𝑖𝑖=1
) =∑∑𝜂𝜂𝑚𝑚𝑚𝑚(‖𝐱𝐱 − 𝐱𝐱𝒊𝒊‖)

𝑛𝑛

𝑗𝑗=1

𝑛𝑛

𝑖𝑖=1
.                                                           (6) 

𝐒𝐒 = (𝟎𝟎𝑴𝑴×𝑴𝑴𝟎𝟎𝒏𝒏×𝑴𝑴
𝟎𝟎𝑴𝑴×𝒏𝒏
 𝐄𝐄𝒏𝒏×𝒏𝒏

). 

 

𝐒𝐒𝐒𝐒𝒑𝒑𝒑𝒑𝒏𝒏(𝜷𝜷) = (𝐘𝐘 − 𝐁𝐁𝜷𝜷)𝐓𝐓(𝐘𝐘 − 𝐁𝐁𝜷𝜷) + 𝜆𝜆𝜷𝜷T𝐒𝐒𝜷𝜷 = (𝐘𝐘 − 𝐁𝐁𝜷𝜷)𝐓𝐓(𝐘𝐘 − 𝐁𝐁𝜷𝜷) + 𝜆𝜆𝜹𝜹T𝐄𝐄𝛅𝛅,                     (7) 

Since, the basis functions 𝜙𝜙1(𝐱𝐱), … , 𝜙𝜙𝑀𝑀(𝐱𝐱), are not penalized, then from 
(6) can be defined the penalized matrix 𝐒𝐒 as  

𝐒𝐒 = (𝟎𝟎𝑴𝑴×𝑴𝑴
𝟎𝟎𝒏𝒏×𝑴𝑴

𝟎𝟎𝑴𝑴×𝒏𝒏
 𝐄𝐄𝒏𝒏×𝒏𝒏

). 

Unknown parameters of Thin-plate splines can be fitted by minimalize of 
penalized least squared as  

𝐒𝐒𝐒𝐒𝒑𝒑𝒑𝒑𝒏𝒏(𝜷𝜷) = (𝐘𝐘 − 𝐁𝐁𝜷𝜷)𝐓𝐓(𝐘𝐘 − 𝐁𝐁𝜷𝜷) + 𝜆𝜆𝜷𝜷T𝐒𝐒𝜷𝜷
= (𝐘𝐘 − 𝐁𝐁𝜷𝜷)𝐓𝐓(𝐘𝐘 − 𝐁𝐁𝜷𝜷) + 𝜆𝜆𝜹𝜹T𝐄𝐄𝐄𝐄,                                          (7) 

under the condition 𝐓𝐓𝐓𝐓𝐄𝐄 = 𝟎𝟎. 

As we have shown above, the smoothing parameter 𝜆𝜆 controls the balance. 
Here are plots of three GAMs with different smoothing, or lambda values. 
One on the left smooths too much, creating a straight line through curved data. 
The one in the middle smooths too little, fitting noise rather than the trend. 
The one on the right is just right. It is lambda value balances over-and-under-
fitting, see Figure 2. 

Figure 2 

Choosing the right smoothing parameter 𝝀𝝀 

 
 

 
 
 
 
 
 
Source: processed by the author using statistical program R, 2019 

Normally when we fit a model with package mgcv and gam() function, we 
let this package does the work of selecting a smoothing parameter. However, 
we can fix the smoothing parameter to a value of our choosing. Instead if we 
allow R to do this work for us, the mgcv package offers several different 
methods for selecting smoothing parameters. I, and most GAM experts, 
strongly recommend that you fit models with the REML, or “Restricted 
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under the condition 𝐓𝐓𝐓𝐓𝐄𝐄 = 𝟎𝟎. 

As we have shown above, the smoothing parameter 𝜆𝜆 controls the balance. 
Here are plots of three GAMs with different smoothing, or lambda values. 
One on the left smooths too much, creating a straight line through curved data. 
The one in the middle smooths too little, fitting noise rather than the trend. 
The one on the right is just right. It is lambda value balances over-and-under-
fitting, see Figure 2. 

Figure 2 

Choosing the right smoothing parameter 𝝀𝝀 

 
 

 
 
 
 
 
 
Source: processed by the author using statistical program R, 2019 

Normally when we fit a model with package mgcv and gam() function, we 
let this package does the work of selecting a smoothing parameter. However, 
we can fix the smoothing parameter to a value of our choosing. Instead if we 
allow R to do this work for us, the mgcv package offers several different 
methods for selecting smoothing parameters. I, and most GAM experts, 
strongly recommend that you fit models with the REML, or “Restricted 

Maximum Likelihood” method. While different methods have their 
advantages, REML is most likely to give you stable results. [7]

3. Generalized Additive Models
Generalized Additive Models, also known with the acronym GAMs are

nonparametric GLMs. These models are the extension of GLMs to a
combination of a linear predictor and the sum of smooth functions of 
explanatory variables. While Gaussian models can be used in many statistical 
applications, for several types of problems they are not appropriate, like the 
case of non-life insurance pricing. [9]

GAMs are composed of a random component, an additive component and 
a link function. The response variable, 𝑌𝑌, follows some exponential family 
distribution

𝑓𝑓𝜃𝜃(𝑦𝑦)

= exp [
{𝑦𝑦𝑦𝑦 − 𝑏𝑏(𝑦𝑦)}

𝑎𝑎(𝜙𝜙)

+ 𝑐𝑐(𝑦𝑦, 𝜙𝜙)],        (8)

where 𝑎𝑎, 𝑏𝑏 and 𝑐𝑐 are arbitrary functions, 𝜙𝜙 an arbitrary ‘scale’ parameter, and 
𝑦𝑦 is known as the ‘canonical parameter’ of distribution. [9]

The mean𝜇𝜇 = 𝐸𝐸(𝑦𝑦)characterized in GAMsis linked to nonlinear 
nonparametric predictor 𝜂𝜂 = 𝑔𝑔(𝜇𝜇) = 𝛼𝛼 + ∑ 𝑓𝑓𝑖𝑖(𝑥𝑥𝑖𝑖)𝑝𝑝

𝑖𝑖=1 , where 𝑓𝑓𝑖𝑖(𝑥𝑥𝑖𝑖) are
smooth nonparametric functions. Relationship between the mean and 𝜂𝜂 is 
defined by a link function 𝑔𝑔(𝜇𝜇) = 𝜂𝜂. The most commonly used link function 
is canonical link function, where 𝜂𝜂 = 𝑦𝑦.  In order to fit GAMs to the data, we 
use basis expansions of smooth functions and penalized likelihood 
maximization for model estimation in which wiggly models are penalized 
more heavily than smooth models  in a controllable manner, and degree of 
smoothness is chosen based on AIC. [9]
3.1 Fitting GAMs by penalized iterative re-weighted least squares (P-IRLS) 

GAMs can be fitted by penalized likelihood maximization, and in practice 
this will be achieve by penalized iterative re-weighted least squares, as P-
IRLS. For given smoothing parameters, the following steps are iterated to 
convergence:

1. Given the current linear predictor estimate, �̂�𝜼, and corresponding
estimated mean response vector, �̂�𝝁, calculate:
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where 𝜶𝜶 and 𝜹𝜹are vectors of unknown parameters to be estimated. Vector 𝜹𝜹 has also applied 

that 𝐓𝐓𝐓𝐓𝛅𝛅 = 𝟎𝟎, where𝑇𝑇𝑖𝑖𝑗𝑗 = 𝜙𝜙𝑖𝑖𝑗𝑗(𝑥𝑥𝑗𝑗) [2]. The function𝜙𝜙1,… , 𝜙𝜙𝑀𝑀, where 𝑀𝑀 = (𝑚𝑚 + 𝑑𝑑 − 1
𝑑𝑑 ) are 

linearly independent polynomials spanning the space of polynomials in ℜ𝑚𝑚 of degree less than 

𝑚𝑚. Linear cover 𝜙𝜙𝑖𝑖 span the space of function, where 𝐽𝐽𝑚𝑚𝑚𝑚 = 0. Basis functions used in (7) are 

defined as 

𝜂𝜂𝑚𝑚𝑚𝑚(𝑟𝑟) =

{ 
 
  

(−1)𝑚𝑚+1+𝑚𝑚/2
22𝑚𝑚−1𝜋𝜋𝑚𝑚/2(𝑚𝑚 − 1)! (𝑚𝑚 − 𝑑𝑑/2)! 𝑟𝑟

2𝑚𝑚−𝑚𝑚log(𝑟𝑟),    𝑑𝑑 is even

Γ (𝑚𝑚2 − 𝑚𝑚)
22𝑚𝑚𝜋𝜋𝑚𝑚/2(𝑚𝑚 − 1)!                                                   ,      𝑑𝑑 is odd.

                                 (5) 

Now defining matrix 𝐄𝐄𝑛𝑛×𝑛𝑛 evaluated basis factors by 𝐸𝐸𝑖𝑖𝑗𝑗 ≡ 𝜂𝜂𝑚𝑚𝑚𝑚(‖𝐱𝐱𝐢𝐢 − 𝐱𝐱𝐣𝐣‖) . Then the 

matrix of evaluated basis functions 𝐁𝐁for Thin-plate splines is defined as 𝐁𝐁 = (𝐓𝐓  𝐄𝐄).Vector of 

unknown parameters 𝜷𝜷 is defined as 𝛽𝛽 = (𝛼𝛼T, 𝛿𝛿T)T. Under the condition  𝐓𝐓𝐓𝐓𝛅𝛅 = 𝟎𝟎results 

𝐽𝐽𝑚𝑚𝑚𝑚 = (∑𝛿𝛿𝑖𝑖𝜂𝜂𝑚𝑚𝑚𝑚(‖𝐱𝐱 − 𝐱𝐱𝒊𝒊‖)
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) =∑∑𝜂𝜂𝑚𝑚𝑚𝑚(‖𝐱𝐱 − 𝐱𝐱𝒊𝒊‖)
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.                                                           (6) 

𝐒𝐒 = (𝟎𝟎𝑴𝑴×𝑴𝑴𝟎𝟎𝒏𝒏×𝑴𝑴
𝟎𝟎𝑴𝑴×𝒏𝒏
 𝐄𝐄𝒏𝒏×𝒏𝒏

). 

 

𝐒𝐒𝐒𝐒𝒑𝒑𝒑𝒑𝒏𝒏(𝜷𝜷) = (𝐘𝐘 − 𝐁𝐁𝜷𝜷)𝐓𝐓(𝐘𝐘 − 𝐁𝐁𝜷𝜷) + 𝜆𝜆𝜷𝜷T𝐒𝐒𝜷𝜷 = (𝐘𝐘 − 𝐁𝐁𝜷𝜷)𝐓𝐓(𝐘𝐘 − 𝐁𝐁𝜷𝜷) + 𝜆𝜆𝜹𝜹T𝐄𝐄𝛅𝛅,                     (7) 
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Maximum Likelihood” method. While different methods have their 
advantages, REML is most likely to give you stable results. [7]

3. Generalized Additive Models
Generalized Additive Models, also known with the acronym GAMs are

nonparametric GLMs. These models are the extension of GLMs to a
combination of a linear predictor and the sum of smooth functions of 
explanatory variables. While Gaussian models can be used in many statistical 
applications, for several types of problems they are not appropriate, like the 
case of non-life insurance pricing. [9]

GAMs are composed of a random component, an additive component and 
a link function. The response variable, 𝑌𝑌, follows some exponential family 
distribution

𝑓𝑓𝜃𝜃(𝑦𝑦)

= exp [
{𝑦𝑦𝑦𝑦 − 𝑏𝑏(𝑦𝑦)}

𝑎𝑎(𝜙𝜙)

+ 𝑐𝑐(𝑦𝑦, 𝜙𝜙)],        (8)

where 𝑎𝑎, 𝑏𝑏 and 𝑐𝑐 are arbitrary functions, 𝜙𝜙 an arbitrary ‘scale’ parameter, and 
𝑦𝑦 is known as the ‘canonical parameter’ of distribution. [9]

The mean𝜇𝜇 = 𝐸𝐸(𝑦𝑦)characterized in GAMsis linked to nonlinear 
nonparametric predictor 𝜂𝜂 = 𝑔𝑔(𝜇𝜇) = 𝛼𝛼 + ∑ 𝑓𝑓𝑖𝑖(𝑥𝑥𝑖𝑖)𝑝𝑝

𝑖𝑖=1 , where 𝑓𝑓𝑖𝑖(𝑥𝑥𝑖𝑖) are
smooth nonparametric functions. Relationship between the mean and 𝜂𝜂 is 
defined by a link function 𝑔𝑔(𝜇𝜇) = 𝜂𝜂. The most commonly used link function 
is canonical link function, where 𝜂𝜂 = 𝑦𝑦.  In order to fit GAMs to the data, we 
use basis expansions of smooth functions and penalized likelihood 
maximization for model estimation in which wiggly models are penalized 
more heavily than smooth models  in a controllable manner, and degree of 
smoothness is chosen based on AIC. [9]
3.1 Fitting GAMs by penalized iterative re-weighted least squares (P-IRLS) 

GAMs can be fitted by penalized likelihood maximization, and in practice 
this will be achieve by penalized iterative re-weighted least squares, as P-
IRLS. For given smoothing parameters, the following steps are iterated to 
convergence:

1. Given the current linear predictor estimate, �̂�𝜼, and corresponding
estimated mean response vector, �̂�𝝁, calculate:
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Figure 2 

Choosing the right smoothing parameter 𝝀𝝀 

 

 

 

 

 

 

 

 

 
Source: processed by the author using statistical program R, 2019 

 

Normally when we fit a model with package mgcv and gam() function, we let this package 

does the work of selecting a smoothing parameter. However, we can fix the smoothing 

parameter to a value of our choosing. Instead if we allow R to do this work for us, the mgcv 

package offers several different methods for selecting smoothing parameters. I, and most GAM 
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Likelihood” method. While different methods have their advantages, REML is most likely to 

give you stable results. [7] 
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𝑦𝑦 is known as the ‘canonical parameter’ of distribution. [9]

The mean𝜇𝜇 = 𝐸𝐸(𝑦𝑦)characterized in GAMsis linked to nonlinear 
nonparametric predictor 𝜂𝜂 = 𝑔𝑔(𝜇𝜇) = 𝛼𝛼 + ∑ 𝑓𝑓𝑖𝑖(𝑥𝑥𝑖𝑖)𝑝𝑝

𝑖𝑖=1 , where 𝑓𝑓𝑖𝑖(𝑥𝑥𝑖𝑖) are
smooth nonparametric functions. Relationship between the mean and 𝜂𝜂 is 
defined by a link function 𝑔𝑔(𝜇𝜇) = 𝜂𝜂. The most commonly used link function 
is canonical link function, where 𝜂𝜂 = 𝑦𝑦.  In order to fit GAMs to the data, we 
use basis expansions of smooth functions and penalized likelihood 
maximization for model estimation in which wiggly models are penalized 
more heavily than smooth models  in a controllable manner, and degree of 
smoothness is chosen based on AIC. [9]
3.1 Fitting GAMs by penalized iterative re-weighted least squares (P-IRLS) 

GAMs can be fitted by penalized likelihood maximization, and in practice 
this will be achieve by penalized iterative re-weighted least squares, as P-
IRLS. For given smoothing parameters, the following steps are iterated to 
convergence:

1. Given the current linear predictor estimate, �̂�𝜼, and corresponding
estimated mean response vector, �̂�𝝁, calculate:
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Source: processed by the author using statistical program R, 2019 

 

Normally when we fit a model with package mgcv and gam() function, we let this package 

does the work of selecting a smoothing parameter. However, we can fix the smoothing 

parameter to a value of our choosing. Instead if we allow R to do this work for us, the mgcv 

package offers several different methods for selecting smoothing parameters. I, and most GAM 

experts, strongly recommend that you fit models with the REML, or “Restricted Maximum 

Likelihood” method. While different methods have their advantages, REML is most likely to 

give you stable results. [7] 

3. Generalized Additive Models 

Generalized Additive Models, also known with the acronym GAMs are nonparametric 

GLMs. These models are the extension of GLMs to a combination of a linear predictor and the 

sum of smooth functions of explanatory variables. While Gaussian models can be used in many 

statistical applications, for several types of problems they are not appropriate, like the case of 

non-life insurance pricing. [9] 

GAMs are composed of a random component, an additive component and a link function. 

The response variable, 𝑌𝑌, follows some exponential family distribution 

𝑓𝑓𝜃𝜃(𝑦𝑦) = exp [
{𝑦𝑦𝑦𝑦 − 𝑏𝑏(𝑦𝑦)}

𝑎𝑎(𝜙𝜙) + 𝑐𝑐(𝑦𝑦, 𝜙𝜙)],                                                                                              (8) 

where 𝑎𝑎, 𝑏𝑏 and 𝑐𝑐 are arbitrary functions, 𝜙𝜙 an arbitrary ‘scale’ parameter, and 𝑦𝑦 is known as the 

‘canonical parameter’ of distribution. [9] 
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𝑤𝑤𝑖𝑖 = 1
𝑉𝑉(�̂�𝜇𝑖𝑖)𝑔𝑔′(�̂�𝜇𝑖𝑖)2 and𝑧𝑧𝑖𝑖 = 𝑔𝑔′(�̂�𝜇𝑖𝑖)(𝑦𝑦𝑖𝑖 − �̂�𝜇𝑖𝑖) + �̂�𝜂𝑖𝑖

where var(𝑌𝑌𝑖𝑖) = 𝑉𝑉(𝜇𝜇𝑖𝑖)𝜙𝜙 and 𝑔𝑔 is a link function.

2. Defining 𝐖𝐖   as the diagonal matrix such that 𝑊𝑊𝑖𝑖𝑖𝑖 = 𝑤𝑤𝑖𝑖𝑖𝑖, minimize

‖√𝐖𝐖𝐳𝐳 − √𝐖𝐖𝐗𝐗𝜷𝜷‖2 + 𝜆𝜆1𝜷𝜷𝐓𝐓𝑺𝑺𝟏𝟏𝜷𝜷 + 𝜆𝜆2𝜷𝜷𝐓𝐓𝑺𝑺𝟐𝟐𝜷𝜷

w.r.t. 𝜷𝜷to obtain new estimate �̂�𝜷, and hence updated estimates �̂�𝜼 =
𝐗𝐗�̂�𝜷 and �̂�𝜇𝑖𝑖 = 𝑔𝑔−1(�̂�𝜂𝑖𝑖) [9].

3.2 Smoothness selection criteria
In the previous section, we have described P-IRLS method for estimating 

𝜷𝜷 given the smoothing parameter 𝝀𝝀.The smoothing parameter balances 
between likelihood and wiggliness to optimize model fit. The question now 
is, how can be the parameter 𝝀𝝀 estimated? There two main approaches. The 
first one is used, when 𝜎𝜎2 is known and the second if this parameter is 
unknown. In the next sections the both approaches are described.  

3.2.1 Known scale parameter: UBRE

This approach try to choose smooth parameters in order to value �̂�𝝁is a close 
as possible to the true value 𝜇𝜇 ≡ 𝔼𝔼(𝐲𝐲). That’s the reason, why we need to 
minimize the expected mean square error (MSE) 𝑀𝑀 of the model, such that 

𝑀𝑀 = 𝔼𝔼 (‖𝝁𝝁 − 𝐗𝐗�̂�𝜷‖2/𝑛𝑛)
= 𝔼𝔼(‖𝐲𝐲 − 𝐀𝐀𝐲𝐲‖2)/𝑛𝑛 − 𝜎𝜎2

+ 2tr(𝐀𝐀)𝜎𝜎2/𝑛𝑛.         (9)

Minimizing (9) is the same as minimize of the un-biased risk estimator –
UBRE, defined as

𝜐𝜐𝑢𝑢(𝝀𝝀) = ‖𝐲𝐲 − 𝐀𝐀𝐲𝐲‖2/𝑛𝑛 − 𝜎𝜎2

+ 2𝑡𝑡𝑡𝑡(𝐀𝐀)𝜎𝜎2

/𝑛𝑛,        (10)

Note that r.h.s of (10) depends on the smoothing parameters through 𝐀𝐀. If 
𝜎𝜎2 is known then estimating 𝜆𝜆 by minimizing 𝑉𝑉𝑢𝑢 works well, but the problems

arise if 𝜎𝜎2 has to be estimated [9]. For example, substituting the
approximation

𝔼𝔼(‖𝐲𝐲 − 𝐀𝐀𝐲𝐲‖2)
= 𝜎𝜎2{𝑛𝑛
− tr(𝐀𝐀)}              (11)

implied by estimating the variance defined as �̂�𝜎2 = ‖𝐲𝐲−𝐀𝐀𝐲𝐲‖2

𝑛𝑛−tr(𝐀𝐀) into (9) yields

𝑀𝑀 = 𝔼𝔼 (‖𝝁𝝁 − 𝐗𝐗�̂�𝜷‖2/𝑛𝑛)

= tr(𝐀𝐀)
𝑛𝑛 𝜎𝜎2  (12)

where the MSE estimator �̃�𝑀 = tr(𝐀𝐀)�̂�𝜎2/𝑛𝑛. Now consider comparison of
1 and 2 parameter unpenalized models using �̃�𝑀:  the 2 parameter model has 
to reduce �̂�𝜎2 to less than half the one parameter 𝜎𝜎2 estimate before it would
be judged to be an improvement. Clearly, therefore, �̃�𝑀, is not suitable basis
for model selection. [8]

3.2.2 Unknown scale parameter: Cross validation

As we have presented in previous section, minimize the average square 
error in model predictions of 𝔼𝔼(𝐲𝐲) will not work well when 𝜙𝜙 is unknown. 
An alternative is to base smoothing parameter estimation on mean square 
prediction error, which is readily shown to be

𝑃𝑃
= 𝜎𝜎2

+ 𝑀𝑀.  (13)
where 𝑀𝑀 denotes the same as in (9). The direct dependence on 𝜎𝜎2 tends to
mean that criteria based on 𝑃𝑃 are much more resistant to over-smoothing, 
which would inflate the 𝜎𝜎2 estimate, than are criteria based on 𝑀𝑀. [8]

To estimate 𝑃𝑃 we use the most obvious way – cross validation. There is 
always omitted one response,𝑦𝑦𝑖𝑖, from the model fitting process and then is 
fitted again on the remaining data. 𝑃𝑃 estimate by Ordinary Cross Validation
– OCV is given by

 

𝑀𝑀 = 𝔼𝔼 (‖𝝁𝝁 − 𝐗𝐗�̂�𝜷‖2/𝑛𝑛) = 𝔼𝔼(‖𝐲𝐲 − 𝐀𝐀𝐲𝐲‖2)/𝑛𝑛 − 𝜎𝜎2 + 2tr(𝐀𝐀)𝜎𝜎2/𝑛𝑛.                                            (9) 

𝜐𝜐𝑢𝑢(𝝀𝝀) = ‖𝐲𝐲 − 𝐀𝐀𝐲𝐲‖2/𝑛𝑛 − 𝜎𝜎2 + 2𝑡𝑡𝑡𝑡(𝐀𝐀)𝜎𝜎2/𝑛𝑛,                                                                                (10) 

𝔼𝔼(‖𝐲𝐲 − 𝐀𝐀𝐲𝐲‖2) = 𝜎𝜎2{𝑛𝑛 − tr(𝐀𝐀)}                                                                                                       (11) 

implied by estimating the variance defined as �̂�𝜎2 = ‖𝐲𝐲−𝐀𝐀𝐲𝐲‖2

𝑛𝑛−tr(𝐀𝐀)  into (9) yields 

𝑀𝑀 = 𝔼𝔼 (‖𝝁𝝁 − 𝐗𝐗�̂�𝜷‖2/𝑛𝑛) = tr(𝐀𝐀)
𝑛𝑛 𝜎𝜎2                                                                                                 (12) 

𝑃𝑃 = 𝜎𝜎2 + 𝑀𝑀.                                                                                                                                          (13) 

 

𝑀𝑀 = 𝔼𝔼 (‖𝝁𝝁 − 𝐗𝐗�̂�𝜷‖2/𝑛𝑛) = 𝔼𝔼(‖𝐲𝐲 − 𝐀𝐀𝐲𝐲‖2)/𝑛𝑛 − 𝜎𝜎2 + 2tr(𝐀𝐀)𝜎𝜎2/𝑛𝑛.                                            (9) 

𝜐𝜐𝑢𝑢(𝝀𝝀) = ‖𝐲𝐲 − 𝐀𝐀𝐲𝐲‖2/𝑛𝑛 − 𝜎𝜎2 + 2𝑡𝑡𝑡𝑡(𝐀𝐀)𝜎𝜎2/𝑛𝑛,                                                                                (10) 

𝔼𝔼(‖𝐲𝐲 − 𝐀𝐀𝐲𝐲‖2) = 𝜎𝜎2{𝑛𝑛 − tr(𝐀𝐀)}                                                                                                       (11) 

implied by estimating the variance defined as �̂�𝜎2 = ‖𝐲𝐲−𝐀𝐀𝐲𝐲‖2

𝑛𝑛−tr(𝐀𝐀)  into (9) yields 

𝑀𝑀 = 𝔼𝔼 (‖𝝁𝝁 − 𝐗𝐗�̂�𝜷‖2/𝑛𝑛) = tr(𝐀𝐀)
𝑛𝑛 𝜎𝜎2                                                                                                 (12) 

𝑃𝑃 = 𝜎𝜎2 + 𝑀𝑀.                                                                                                                                          (13) 

 

𝑀𝑀 = 𝔼𝔼 (‖𝝁𝝁 − 𝐗𝐗�̂�𝜷‖2/𝑛𝑛) = 𝔼𝔼(‖𝐲𝐲 − 𝐀𝐀𝐲𝐲‖2)/𝑛𝑛 − 𝜎𝜎2 + 2tr(𝐀𝐀)𝜎𝜎2/𝑛𝑛.                                            (9) 

𝜐𝜐𝑢𝑢(𝝀𝝀) = ‖𝐲𝐲 − 𝐀𝐀𝐲𝐲‖2/𝑛𝑛 − 𝜎𝜎2 + 2𝑡𝑡𝑡𝑡(𝐀𝐀)𝜎𝜎2/𝑛𝑛,                                                                                (10) 

𝔼𝔼(‖𝐲𝐲 − 𝐀𝐀𝐲𝐲‖2) = 𝜎𝜎2{𝑛𝑛 − tr(𝐀𝐀)}                                                                                                       (11) 

implied by estimating the variance defined as �̂�𝜎2 = ‖𝐲𝐲−𝐀𝐀𝐲𝐲‖2

𝑛𝑛−tr(𝐀𝐀)  into (9) yields 

𝑀𝑀 = 𝔼𝔼 (‖𝝁𝝁 − 𝐗𝐗�̂�𝜷‖2/𝑛𝑛) = tr(𝐀𝐀)
𝑛𝑛 𝜎𝜎2                                                                                                 (12) 

𝑃𝑃 = 𝜎𝜎2 + 𝑀𝑀.                                                                                                                                          (13) 

 

𝑀𝑀 = 𝔼𝔼 (‖𝝁𝝁 − 𝐗𝐗�̂�𝜷‖2/𝑛𝑛) = 𝔼𝔼(‖𝐲𝐲 − 𝐀𝐀𝐲𝐲‖2)/𝑛𝑛 − 𝜎𝜎2 + 2tr(𝐀𝐀)𝜎𝜎2/𝑛𝑛.                                            (9) 

𝜐𝜐𝑢𝑢(𝝀𝝀) = ‖𝐲𝐲 − 𝐀𝐀𝐲𝐲‖2/𝑛𝑛 − 𝜎𝜎2 + 2𝑡𝑡𝑡𝑡(𝐀𝐀)𝜎𝜎2/𝑛𝑛,                                                                                (10) 

𝔼𝔼(‖𝐲𝐲 − 𝐀𝐀𝐲𝐲‖2) = 𝜎𝜎2{𝑛𝑛 − tr(𝐀𝐀)}                                                                                                       (11) 

implied by estimating the variance defined as �̂�𝜎2 = ‖𝐲𝐲−𝐀𝐀𝐲𝐲‖2

𝑛𝑛−tr(𝐀𝐀)  into (9) yields 

𝑀𝑀 = 𝔼𝔼 (‖𝝁𝝁 − 𝐗𝐗�̂�𝜷‖2/𝑛𝑛) = tr(𝐀𝐀)
𝑛𝑛 𝜎𝜎2                                                                                                 (12) 

𝑃𝑃 = 𝜎𝜎2 + 𝑀𝑀.                                                                                                                                          (13) 
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arise if 𝜎𝜎2 has to be estimated [9]. For example, substituting the
approximation

𝔼𝔼(‖𝐲𝐲 − 𝐀𝐀𝐲𝐲‖2)
= 𝜎𝜎2{𝑛𝑛
− tr(𝐀𝐀)}              (11)

implied by estimating the variance defined as �̂�𝜎2 = ‖𝐲𝐲−𝐀𝐀𝐲𝐲‖2

𝑛𝑛−tr(𝐀𝐀) into (9) yields

𝑀𝑀 = 𝔼𝔼 (‖𝝁𝝁 − 𝐗𝐗�̂�𝜷‖2/𝑛𝑛)

= tr(𝐀𝐀)
𝑛𝑛 𝜎𝜎2  (12)

where the MSE estimator �̃�𝑀 = tr(𝐀𝐀)�̂�𝜎2/𝑛𝑛. Now consider comparison of
1 and 2 parameter unpenalized models using �̃�𝑀:  the 2 parameter model has 
to reduce �̂�𝜎2 to less than half the one parameter 𝜎𝜎2 estimate before it would
be judged to be an improvement. Clearly, therefore, �̃�𝑀, is not suitable basis
for model selection. [8]

3.2.2 Unknown scale parameter: Cross validation

As we have presented in previous section, minimize the average square 
error in model predictions of 𝔼𝔼(𝐲𝐲) will not work well when 𝜙𝜙 is unknown. 
An alternative is to base smoothing parameter estimation on mean square 
prediction error, which is readily shown to be

𝑃𝑃
= 𝜎𝜎2

+ 𝑀𝑀.  (13)
where 𝑀𝑀 denotes the same as in (9). The direct dependence on 𝜎𝜎2 tends to
mean that criteria based on 𝑃𝑃 are much more resistant to over-smoothing, 
which would inflate the 𝜎𝜎2 estimate, than are criteria based on 𝑀𝑀. [8]

To estimate 𝑃𝑃 we use the most obvious way – cross validation. There is 
always omitted one response,𝑦𝑦𝑖𝑖, from the model fitting process and then is 
fitted again on the remaining data. 𝑃𝑃 estimate by Ordinary Cross Validation
– OCV is given by

 

𝑀𝑀 = 𝔼𝔼 (‖𝝁𝝁 − 𝐗𝐗�̂�𝜷‖2/𝑛𝑛) = 𝔼𝔼(‖𝐲𝐲 − 𝐀𝐀𝐲𝐲‖2)/𝑛𝑛 − 𝜎𝜎2 + 2tr(𝐀𝐀)𝜎𝜎2/𝑛𝑛.                                            (9) 

𝜐𝜐𝑢𝑢(𝝀𝝀) = ‖𝐲𝐲 − 𝐀𝐀𝐲𝐲‖2/𝑛𝑛 − 𝜎𝜎2 + 2𝑡𝑡𝑡𝑡(𝐀𝐀)𝜎𝜎2/𝑛𝑛,                                                                                (10) 

𝔼𝔼(‖𝐲𝐲 − 𝐀𝐀𝐲𝐲‖2) = 𝜎𝜎2{𝑛𝑛 − tr(𝐀𝐀)}                                                                                                       (11) 

implied by estimating the variance defined as �̂�𝜎2 = ‖𝐲𝐲−𝐀𝐀𝐲𝐲‖2

𝑛𝑛−tr(𝐀𝐀)  into (9) yields 

𝑀𝑀 = 𝔼𝔼 (‖𝝁𝝁 − 𝐗𝐗�̂�𝜷‖2/𝑛𝑛) = tr(𝐀𝐀)
𝑛𝑛 𝜎𝜎2                                                                                                 (12) 

𝑃𝑃 = 𝜎𝜎2 + 𝑀𝑀.                                                                                                                                          (13) 

 

𝑀𝑀 = 𝔼𝔼 (‖𝝁𝝁 − 𝐗𝐗�̂�𝜷‖2/𝑛𝑛) = 𝔼𝔼(‖𝐲𝐲 − 𝐀𝐀𝐲𝐲‖2)/𝑛𝑛 − 𝜎𝜎2 + 2tr(𝐀𝐀)𝜎𝜎2/𝑛𝑛.                                            (9) 

𝜐𝜐𝑢𝑢(𝝀𝝀) = ‖𝐲𝐲 − 𝐀𝐀𝐲𝐲‖2/𝑛𝑛 − 𝜎𝜎2 + 2𝑡𝑡𝑡𝑡(𝐀𝐀)𝜎𝜎2/𝑛𝑛,                                                                                (10) 

𝔼𝔼(‖𝐲𝐲 − 𝐀𝐀𝐲𝐲‖2) = 𝜎𝜎2{𝑛𝑛 − tr(𝐀𝐀)}                                                                                                       (11) 

implied by estimating the variance defined as �̂�𝜎2 = ‖𝐲𝐲−𝐀𝐀𝐲𝐲‖2

𝑛𝑛−tr(𝐀𝐀)  into (9) yields 

𝑀𝑀 = 𝔼𝔼 (‖𝝁𝝁 − 𝐗𝐗�̂�𝜷‖2/𝑛𝑛) = tr(𝐀𝐀)
𝑛𝑛 𝜎𝜎2                                                                                                 (12) 

𝑃𝑃 = 𝜎𝜎2 + 𝑀𝑀.                                                                                                                                          (13) 

 

𝑀𝑀 = 𝔼𝔼 (‖𝝁𝝁 − 𝐗𝐗�̂�𝜷‖2/𝑛𝑛) = 𝔼𝔼(‖𝐲𝐲 − 𝐀𝐀𝐲𝐲‖2)/𝑛𝑛 − 𝜎𝜎2 + 2tr(𝐀𝐀)𝜎𝜎2/𝑛𝑛.                                            (9) 

𝜐𝜐𝑢𝑢(𝝀𝝀) = ‖𝐲𝐲 − 𝐀𝐀𝐲𝐲‖2/𝑛𝑛 − 𝜎𝜎2 + 2𝑡𝑡𝑡𝑡(𝐀𝐀)𝜎𝜎2/𝑛𝑛,                                                                                (10) 

𝔼𝔼(‖𝐲𝐲 − 𝐀𝐀𝐲𝐲‖2) = 𝜎𝜎2{𝑛𝑛 − tr(𝐀𝐀)}                                                                                                       (11) 
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𝜐𝜐0

= 1
𝑛𝑛 ∑ (𝑦𝑦𝑖𝑖

𝑛𝑛

𝑖𝑖=1

− �̂�𝜇𝑖𝑖
[−𝑖𝑖])

2
,  (14)

where �̂�𝜇𝑖𝑖
[−𝑖𝑖] denotes the prediction 𝔼𝔼(𝑦𝑦𝑖𝑖) obtained from the fitted model to all

data except 𝑦𝑦𝑖𝑖. The advantage is, that it is not necessary to calculate 𝜐𝜐0 by 
performing 𝑛𝑛 models fits, to obtain the 𝑛𝑛 terms �̂�𝜇𝑖𝑖

[−𝑖𝑖]. [9] When we to find 𝑖𝑖𝑡𝑡ℎ

term in OCV score, we have to focus on minimizing the penalized least 
squares objective. We have that 

∑ (𝑦𝑦𝑗𝑗 − �̂�𝜇𝑗𝑗
[−𝑖𝑖])

2
𝑛𝑛

𝑗𝑗=1
𝑗𝑗≠𝑖𝑖
+ 𝑃𝑃𝑃𝑃𝑛𝑛𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖𝑃𝑃𝑃𝑃 .  (15)

For simplify (15) we can add the term (�̂�𝜇𝑗𝑗
[−𝑖𝑖] − �̂�𝜇𝑗𝑗

[−𝑖𝑖])
2
, which is equal to

zero. Clearly adding zero to this objective will leave the estimates that 
minimize it completely unchanged. So we obtain

∑ (𝑦𝑦𝑗𝑗
∗ − �̂�𝜇𝑗𝑗

[−𝑖𝑖])
2

𝑛𝑛

𝑗𝑗=1
+ 𝑃𝑃𝑃𝑃𝑛𝑛𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖𝑃𝑃𝑃𝑃,  (16)

where 𝐲𝐲∗ = 𝐲𝐲 − �̅�𝐲[𝒊𝒊] + �̅�𝝁[𝒊𝒊]: �̅�𝐲[𝒊𝒊]and�̅�𝝁[𝒊𝒊]are vectors of zeroes except for their
𝑖𝑖𝑡𝑡ℎ elements, which are 𝑦𝑦𝑖𝑖 and �̂�𝜇𝑖𝑖

[−𝑖𝑖], respectively. Minimizing itself obviously
results 𝑖𝑖𝑡𝑡ℎ prediction of �̂�𝜇𝑖𝑖

[−𝑖𝑖] and also in an influence matrix 𝐀𝐀 for the model
with whole data. So, considering the 𝑖𝑖𝑡𝑡ℎ prediction, we have that, �̂�𝜇𝑖𝑖

[−𝑖𝑖] =
𝐀𝐀𝑖𝑖𝐲𝐲∗ = 𝐀𝐀𝑖𝑖𝐲𝐲 − 𝐴𝐴𝒊𝒊𝒊𝒊𝑦𝑦𝒊𝒊 + 𝐴𝐴𝒊𝒊𝒊𝒊�̂�𝜇𝑖𝑖

[−𝑖𝑖] = �̂�𝜇𝑖𝑖 − 𝐴𝐴𝒊𝒊𝒊𝒊𝑦𝑦𝒊𝒊 + 𝐴𝐴𝒊𝒊𝒊𝒊�̂�𝜇𝑖𝑖
[−𝑖𝑖], where �̂�𝜇𝑖𝑖 comes

from the fit to full 𝐲𝐲. After rearrangement then yields 𝑦𝑦𝒊𝒊 − �̂�𝜇𝑖𝑖
[−𝑖𝑖] =

(𝑦𝑦𝒊𝒊 − �̂�𝜇)/(1 − 𝐴𝐴𝒊𝒊𝒊𝒊), so that the OCV score becomes

𝜐𝜐0

= 1
𝑛𝑛 ∑

(𝑦𝑦𝑖𝑖 − �̂�𝜇𝑖𝑖)2

(1 − 𝐴𝐴𝒊𝒊𝒊𝒊)2

𝑛𝑛

𝑖𝑖=1
, (17)

what can clearly be calculated from a single fit of the original model. [9]

OCV is reasonable way of estimating smoothing parameters, but suffers 
from two potential drawbacks. Firstly, it is computationally expensive to 
minimize in the additive model case, where there may be several smoothing 
parameters. Secondly, it has a slightly disturbing lack of invariance. For 
solving these problems Woods shows, that the ordinary cross validation score 
can be written  

𝜐𝜐𝐺𝐺

= 𝑛𝑛‖𝐲𝐲 − �̂�𝝁‖2

[𝑛𝑛 − 𝑡𝑡𝑡𝑡(𝐀𝐀)]2 , (18)

which is known as the Generalized Cross Validation score – GCV [3]. 

When in each iteration a penalized reweighted least squares problem is 
solved, and the smoothing parameters of that problem are estimated by GCV 
or UBRE. Eventually, both regression coefficients and smoothing parameter 
estimates converge. 

3.2.3 A distributional assumptions and testing hypotheses about 𝜷𝜷 

In previous section, we have shown how to estimate parameters 𝝀𝝀 and 𝜷𝜷. 
In practice, we have to be able to determine their significance and find the 
confidence intervals of parameters 𝜷𝜷. It is advisable to showshow reliable our 
estimates are. There are two ways to determine the quality of estimates. 
Firstly, it is by defining 𝑆𝑆 = 𝐻𝐻 + ∑ 𝜆𝜆𝑖𝑖𝑆𝑆𝑖𝑖𝑖𝑖 , recalling that parameter estimates
are given by  

�̂�𝜷 = (𝐗𝐗𝐓𝐓𝐖𝐖𝐗𝐗 + 𝐒𝐒)−𝟏𝟏𝐗𝐗𝐓𝐓𝐖𝐖𝐲𝐲, (19) 

where data or pseudo data have covariance matrix 𝐖𝐖−1𝜙𝜙.We have then

𝐕𝐕𝒆𝒆 = (𝐗𝐗𝐓𝐓𝐖𝐖𝐗𝐗 + 𝐒𝐒)−𝟏𝟏𝐗𝐗𝐓𝐓𝐖𝐖𝐗𝐗(𝐗𝐗𝐓𝐓𝐖𝐖𝐗𝐗
+ 𝐒𝐒)−𝟏𝟏𝜙𝜙.  (20) 

From the normality or asymptotical normality as distributional results we 
have  

�̂�𝜷~ 𝑁𝑁(𝔼𝔼(�̂�𝜷), 𝐕𝐕𝑒𝑒). (21)

Generally, it does not hold 𝔼𝔼(�̂�𝜷) = 𝜷𝜷. However, if 𝜷𝜷 = 𝟎𝟎 then 𝔼𝔼 (�̂�𝜷) = 𝟎𝟎, 
with the same validity approximately for same subsets of 𝜷𝜷 [13]. Therefore, 
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OCV is reasonable way of estimating smoothing parameters, but suffers 
from two potential drawbacks. Firstly, it is computationally expensive to 
minimize in the additive model case, where there may be several smoothing 
parameters. Secondly, it has a slightly disturbing lack of invariance. For 
solving these problems Woods shows, that the ordinary cross validation score 
can be written  

𝜐𝜐𝐺𝐺

= 𝑛𝑛‖𝐲𝐲 − �̂�𝝁‖2

[𝑛𝑛 − 𝑡𝑡𝑡𝑡(𝐀𝐀)]2 , (18)

which is known as the Generalized Cross Validation score – GCV [3]. 

When in each iteration a penalized reweighted least squares problem is 
solved, and the smoothing parameters of that problem are estimated by GCV 
or UBRE. Eventually, both regression coefficients and smoothing parameter 
estimates converge. 

3.2.3 A distributional assumptions and testing hypotheses about 𝜷𝜷 

In previous section, we have shown how to estimate parameters 𝝀𝝀 and 𝜷𝜷. 
In practice, we have to be able to determine their significance and find the 
confidence intervals of parameters 𝜷𝜷. It is advisable to showshow reliable our 
estimates are. There are two ways to determine the quality of estimates. 
Firstly, it is by defining 𝑆𝑆 = 𝐻𝐻 + ∑ 𝜆𝜆𝑖𝑖𝑆𝑆𝑖𝑖𝑖𝑖 , recalling that parameter estimates
are given by  

�̂�𝜷 = (𝐗𝐗𝐓𝐓𝐖𝐖𝐗𝐗 + 𝐒𝐒)−𝟏𝟏𝐗𝐗𝐓𝐓𝐖𝐖𝐲𝐲, (19) 

where data or pseudo data have covariance matrix 𝐖𝐖−1𝜙𝜙.We have then

𝐕𝐕𝒆𝒆 = (𝐗𝐗𝐓𝐓𝐖𝐖𝐗𝐗 + 𝐒𝐒)−𝟏𝟏𝐗𝐗𝐓𝐓𝐖𝐖𝐗𝐗(𝐗𝐗𝐓𝐓𝐖𝐖𝐗𝐗
+ 𝐒𝐒)−𝟏𝟏𝜙𝜙.  (20) 

From the normality or asymptotical normality as distributional results we 
have  

�̂�𝜷~ 𝑁𝑁(𝔼𝔼(�̂�𝜷), 𝐕𝐕𝑒𝑒). (21)

Generally, it does not hold 𝔼𝔼(�̂�𝜷) = 𝜷𝜷. However, if 𝜷𝜷 = 𝟎𝟎 then 𝔼𝔼 (�̂�𝜷) = 𝟎𝟎, 
with the same validity approximately for same subsets of 𝜷𝜷 [13]. Therefore, 
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this result can be used for testing significance of regression parameters. And 
so, based on distributional results we can perform Wald tests for significance 
of regression coefficients �̂�𝜷𝒋𝒋 in the following form 

𝐻𝐻0: 𝜷𝜷𝒋𝒋 = 𝟎𝟎        𝑣𝑣𝑣𝑣.          𝐻𝐻1: 𝜷𝜷𝒋𝒋  ≠ 𝟎𝟎.         

Tests for two nested models from which we want to choose the preferable 
one are performed by ANOVA for GAM. [4] 

To summarize it, we introduce GAM as extension of GLM in which the 
linear predictors can also partly depend linearly on some unknown smooth 
functions. Regression coefficients are estimated by a penalized version of the 
method used to fit GLM, where an extra criterion has to be optimized to find 
the smoothing parameters. 
 

4. The practical part – empirical study of Motor TPL insurance portfolio 

In this chapter, we will use some public insurance data to demonstrate 

usage of models which have been introduced in the previous chapters of this 

paper. We will show calculation and comparison the results of different 

models. GAMs have various applications in all fields related with statistics. 

The nonlife insurance is no exception where advanced regression models are 

considered to be the best market practice in the pricing and the reserving. We 

will be using the R software to calculate and to analyze the results from 

different models. As we mentioned above, it is used package ‘mgcv’ and 

function gam(). 

4.1 Data structure  

Using the package ‘insuranceData’ in R [11], we can load the free 

available dataset ‘dataCar’. These data contain one-year vehicle insurance 

policies in years 2004 and 2005, where is 67,856 number of policies. These 

observations have the following 11 rating factors: 

4.  The practical part – empirical study of Motor TPL insurance 
portfolio
In this chapter, we will use some public insurance data to demonstrate 

usage of models which have been introduced in the previous chapters of 
this paper. We will show calculation and comparison the results of different 
models. GAMs have various applications in all fields related with statistics. 
The nonlife insurance is no exception where advanced regression models are 
considered to be the best market practice in the pricing and the reserving. 
We will be using the R software to calculate and to analyze the results from 
different models. As we mentioned above, it is used package ‘mgcv’ and 
function gam().

4.1  Data structure 
Using the package ‘insuranceData’ in R [11], we can load the free available 

dataset ‘dataCar’. These data contain one-year vehicle insurance policies in 
years 2004 and 2005, where is 67,856 number of policies. These observations 
have the following 11 rating factors:
•	 veh_value vehicle value , in 10 000 dollars,
•	 exposure contains the measure between 0 and 1,
•	 clm has the binary data – occurrence of claims (0 = no, 1 = yes ),
•	 numclaims represents the number of claims,
•	 clmcosts0 has the claim cost information (also with 0 value if there is no 

claims),
•	 veh_body vehicle body, coded as BUS CONVT COUPE HBACK HDTOP 

MCARA MIBUS PANVN RDSTR SEDAN STNWG TRUCK UTE
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•	 veh_age contains values from 1 to 4, where in the tariff class 1 are the 
youngers vehicles,

•	 gender may include one of the two values F or M,
•	 area a factor which include the levels A, B, C, D, E, and F,
•	 agecat with levels 1, 2, 3 and 4, where in the level 1 are the younger 

drivers, 
•	 X OBSTAT a factor with levels 01101 0 0 0.

4.2  Model construction, Testing and the Results 
The final selected GAM model formula is expressed as

where the parameter  denotes the mean and the other parameters  are 
the weights of the explanatory variables. In equation (22), is the function  
smoothing splines function of the continuous rating variable veh_body. In 
this paper, we analysed three different models for frequency and 3 different 
models for severity as well, in term of GAMs. Here are presented the following 
models, which will be analysed in this paper:
MODEL 1:uses these variables, agecat, area, veh_bodythat have the linear 
effects and variable veh_value has a non-linear effect.
MODEL 2: uses these variables agecat, area, veh_body and veh_age that 
follow linear effects, while variableveh_value has a non-linear effect.
MODEL 3: uses these variables, agecat, area, veh_body,veh_age and gender 
that have linear effects and the variable veh_value has a non-linear effect.

4.2.1 Model for Claim Frequency
This section will be presented the results of the different models presented 

in the previous section. Here, we aim at modeling the expected frequency 
 such that it allows us to incorporate structural difference (heterogeneity) 

between different underlying risks. In this paper, we assume that the claims 
count random variable  has a Poisson distribution with expected frequency, 
where . 

The estimation results of the GAMs are presented in Table 1. (The signs 
***, ** and * represent that the results are significant under the 1%, 5% 
and 10% confidence intervals respectively). The results demonstrate that 
the variable gender has an insignificant effect on variable clm, so we should 
remove this variable. For select the best model for frequency, we will use 
the Akaike’s information criterion (AIC). The AIC is an approach to model 
selection in which models are selected to minimize an estimate of the expected 
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Kullback-Leibler divergence between the fitted model and the ‘true model’. 
The criterion is expressed as

where  is the maximized log likelihood of the model and  the number of 
model parameters that have had to be estimated. The model with the lowest 
AIC is selected.

Table 1
Estimation of parametric and non-parametricresults of GAMs for claim frequency models

Parametric 
coefficients MODEL 1 MODEL 2 MODEL 3

Variable Estimate Std. 
Error Pr(>|z|) Estimate Std. 

Error Pr(>|z|) Estimate Std. 
Error Pr(>|z|)

-2.56*** 0.0422 <2e-16 -2.68*** 0.0557 <2e-16 -2.68*** 0.0563 <2e-16

agecat1 0.19*** 0.0529 0.0001 0.20*** 0.0529 0.0001 0.20*** 0.0528 0.0001
agecat2 0.03 0.0430 0.5095 0.03 0.0431 0.5247 0.03 0.0430 0.5258
agecat4 -0.02 0.0412 0.5567 -0.02 0.0412 0.5802 -0.02 0.0412 0.5900
agecat5 -0.22*** 0.0490 7.20e-06 -0.22*** 0.0491 8.08e-06 -0.22*** 0.0491 9.37e-06
agecat6 -0.21*** 0.0590 0.0003 -0.21*** 0.0590 0.0004 -0.21*** 0.0591 0.0005
areaA -0.01 0.0389 0.8552 -0.01 0.0389 0.0014 -0.01 0.0389 0.8539
areaB 0.06 0.0406 0.1702 0.05 0.0406 0.1616 0.06 0.0406 0.1616
areaD -0.12* 0.0512 0.0187 -0.12* 0.0512 0.0199 -0.12* 0.0513 0.0187
areaE -0.04 0.0563 0.4654 -0.04 0.0563 0.0048 -0.04 0.0563 0.4536
areaF 0.08 0.0648 0.2044 0.08 0.0649 0.0471 0.07 0.0650 0.2543

veh_bodyBUS 0.99** 0.3177 0.0017 0.97** 0.3181 0.0023 0.97** 0.3182 0.0022
veh_bodyCONVT -0.61 0.5874 0.3007 -0.68 0.5886 0.0445 -0.68 0.5887 0.2424
veh_bodyCOUPE 0.26* 0.1187 0.0268 0.23* 0.1198 0.0476 0.24* 0.1198 0.0466
veh_bodyHBACK -0.02 0.0377 0.6232 0.01 0.0390 0.0294 0.01 0.0391 0.9503
veh_bodyHDTOP 0.07 0.0905 0.4295 0.03 0.0929 0.0385 0.03 0.0929 0.7186
veh_bodyMCARA 0.46 . 0.2603 0.0784 0.38 0.2628 0.0458 0.38 0.2628 0.1435
veh_bodyMIBUS -0.21 0.1515 0.1620 -0.26 . 0.1542 0.0861 -0.27. 0.1542 0.0851
veh_body_PANVN 0.18 0.1240 0.1505 0.16 0.1242 0.0913 0.17 0.1247 0.1731
veh_bodyRDSTR 0.25 0.5802 0.6620 0.23 0.5804 0.0850 0.24 0.5804 0.6792
veh_bodySTNWG -0.06 0.0430 0.1537 -0.10* 0.0479 0.0313 -0.10* 0.0479 0.0338
veh_bodyTRUCK -0.07 0.0932 0.4491 -0.09 0.0946 0.3076 -0.09 0.0952 0.3502
veh_bodyUTE -0.27*** 0.0667 4.58e-05 -0.29*** 0.0683 1.54e-05 -0.29*** 0.0691 2.86e-05

veh_age2 - - - 0.16*** 0.0446 0.0002 0.16*** 0.0446 0.0002
veh_age3 - - - 0.13** 0.0503 0.0083 0.13** 0.0503 0.0077
veh_age4 - - - 0.19** 0.0658 0.0034 0.19** 0.0660 0.0029
genderM - - - - - - -0.02 0.0301 0.5068

Non-parametric 
(smooth) coefficients MODEL 1 MODEL 2 MODEL 3

Variable edf Ref.df p-value edf Ref.df p-value edf Ref.df p-value
s(veh_value) 2.982 3.761 1.99e-09 3.152 3.986 2.98e-07 3.162 3.997 2.42e-07

Source: processed by the author, using statistical program R 2019
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In model comparative analysis, the results of AICs are presented in Table 2.

Table 2
AIC’s criterion for proposed frequency models

MODEL 1 MODEL 2 MODEL 3
Degrees of freedom 25.98 29.15 30.16

AIC 36 072.57 26 061.95 36 063.47

Source: processed by the author, using statistical program R 2019

Model 2 has the lowest AIC, as can be seen from the Table 2, so the 
MODEL 2 is more accurate than others. 

There is another method to compare our models by using the explained 
deviation. The explained deviations to the models are 0.681% for MODEL 
1, 0.745% for MODEL 2 and 0.747% for MODEL 3. Both models MODEL 
2 and MODEL 3 have higher explained deviations, which mean that their 
results are more accurate than the other model.

Comparing the models can be provided also by analysing the deviation 
using the function ANOVA in R. We can use this method to present the residual 
deviations and of degrees of freedom of the models. Table 3 presents these 
results. The presence of ’**’ means they reject the null hypotheses under the 
0.1% confidence interval.

Table 3
Analysis of Deviations in proposed models of claim frequency

Residual df. Residual 
Deviation Difference df. Difference 

deviation
MODEL 1 67 829 26 586 - - -
MODEL 2 67 826 26 569 3.2252 16.9520 0.0009 ***
MODEL 3 67 825 26 568 1.0107  0.5044   0.4818  

Source: processed by the author, using statistical program R 2019

From the results declared in Table 3, we can see that MODEL 2 is better 
than MODEL 1 and MODEL 3, because it has the lowest p-value. Finally, we 
selected MODEL 2 as the best model for fitting the claim frequency. We can 
select the best GAM model, when we take a look at their UBRE scores. The 
lower UBRE score means the best model. The UBRE scores for our models 
are shown in the next Table 4.
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Table 4 
UBRE scores of claim frequency models

MODEL UBRE score
MODEL 1 -0.60744
MODEL 2 -0.60759
MODEL 3 -0.60757

Source: processed by the author, using statistical program R 2019

From the Table 4 we can see, that the most accurate model for fitting the 
frequency is MODEL 2 again.

4.2.2 Model for Claim Severity
The average amount of claims is the quantity of interest in this part. Here, 

we aim at modeling with gamma distribution. Similar derivations will be done 
for individual claim size modeling, for detail we refer to Ohlsson, Johansson 
[10]. Severity is modeled with gamma distribution with log link function. 

As in previous part, we can take look on the AIC among different models. 
These criterions are shown in the Table 5.MODEL 1 and MODEL 2 has the 
lowest AIC (their values are very similar), as can be seen from the Table 6, so 
the MODEL 2 is more accurate than others in our empirical study. 

Table 5 
AIC’s criterion for proposed severity models

MODEL 1 MODEL 2 MODEL 3
Degrees of freedom 26.26 29.47 30.19
AIC 78 881.86 78 884.02 78 861.34

Source: processed by the author, using statistical program R 2019

We can compare different severity models by comparing the explained 
deviation of these models. MODEL1 has 2.49% explained deviation. For 
MODEL 2 it is equal to 2.57% and for MODEL 3 2.98%. Both models 
MODEL 2 and MODEL 3 have higher explained deviations, which mean, 
that these models are enough.

The estimation results of the GAMs for severity are presented in Table 6. 
(There are also the signs ***, ** and * which represent that the results are 
significant under the 1%, 5% and 10% confidence intervals respectively).
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Table 6
Estimation of parametric and non-parametric results of GAMs for claim severity 
models

Parametric 
coefficients MODEL 1 MODEL 2 MODEL 3

Variable Estimate Std. 
Error Pr(>|z|) Estimate Std. 

Error Pr(>|z|) Estimate Std. 
Error Pr(>|z|)

7.41*** 0.0769 0.0769 7.34*** 0.0996 <2e-16 7.29*** 0.0998 <2e-16

agecat1 0.31* 0.0959 0.0959 0.31** 0.0961 0.0010 0.29** 0.0953 0.0025
agecat2 0.13 0.0785 0.0785 0.12 0.0786 0.1093 0.11 0.0779 0.1385
agecat4 0.05 0.0753 0.0752 0.05 0.0754 0.5044 0.03 0.0748 0.6690
agecat5 -0.06 0.0891 0.0891 -0.06 0.0892 0.4819 -0.07 0.0886 0.3883
agecat6 0.03 0.1073 0.1073 0.04 0.1074 0.7321 -0.01 0.1068 0.9715
areaA -0.09 0.0714 0.0714 -0.09 0.0715 0.2084 -0.09 0.0709 0.1938
areaB -0.09 0.0738 0.0738 -0.09 0.0739 0.2029 -0.10 0.0733 0.1639
areaD -0.12 0.0930 0.0930 -0.12 0.0931 0.1960 -0.10 0.0924 0.2776
areaE 0.10 0.1027 0.1027 0.09 0.1029 0.3522 0.09 0.1021 0.3595
areaF 0.32** 0.1195 0.1196 0.31** 0.1201 0.0088 0.32 0.1191 0.0057

veh_bodyBUS -0.33 0.5912 0.5911 -0.35 0.5921 0.5487 -0.42 0.5873 0.4725
veh_bodyCONVT 0.20 1.0279 1.0269 0.08 1.0324 0.9320 0.17 1.0232 0.8616
veh_bodyCOUPE 0.32 0.2199 0.2199 0.28 0.2214 0.1923 0.27 0.2195 0.2060
veh_bodyHBACK 0.09 0.0689 0.0689 0.11 0.0715 0.1149 0.12 0.0708 0.0738
veh_bodyHDTOP 0.16 0.1635 0.1635 0.13 0.1674 0.4275 0.08 0.1659 0.6087
veh_bodyMCARA -0.83 . 0.4769 0.4769 -0.90 0.4823 0.0622 -0.98 0.4785 0.0388
veh_bodyMIBUS 0.47 . 0.2735 0.2735 0.43 . 0.2796 0.1239 0.41 0.2771 0.1311
veh_body_PANVN 0.21 0.2291 0.2291 0.19 0.2297 0.3928 0.13 0.2282 0.5644
veh_bodyRDSTR -1.40 1.2524 1.2524 -1.43 1.2542 0.2526 -1.40 1.2433 0.2594
veh_bodySTNWG 0.08 0.0793 0.0793 0.05 0.0882 0.5647 0.02 0.0874 0.7892
veh_bodyTRUCK 0.31 . 0.1708 0.1708 0.29 . 0.1730 0.0891 0.22 0.1726 0.2060
veh_bodyUTE 0.18 0.1219 0.1218 0.16 0.1247 0.1744 0.09 0.1247 0.4468

veh_age2 - - - 0.07 0.0815 0.3616 0.07 0.0808 0.3612
veh_age3 - - - 0.08 0.0916 0.3359 0.08 0.0907 0.3535
veh_age4 - - - 0.14 0.1202 0.2404 0.12 0.1188 0.3076
genderM - - - - - - 0.17 0.0545 0.0011

Non-parametric 
(smooth) coefficients MODEL 1 MODEL 2 MODEL 3

Variable edf Ref.df p-value edf Ref.df p-value edf Ref.df p-value
s(veh_value) 3.258 4.128 0.174 3.469 4.407 0.431 3.19 4.087 0.383

Source: processed by the author, using statistical program R 2019

Using ANOVA function in R we can analyze and compare all presented 
models. Table 7 shows the results of the residual deviation and of degrees 
of freedom of the models. Bind in mind that presence of ’**’ means they 
reject the null hypotheses under the 0.1% confidence interval.
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Table 7
Analysis of Deviations in proposed models of claim severity

Residual df. Residual 
Deviation Difference df. Difference 

deviation
MODEL 1 4 596.9 7 155.6 - - -
MODEL 2 4 592.6 7 119.8 3.2787 30.4549 0.0008 ***  
MODEL 3 4 593.9 7150.2 0.6799   5.3917 0.6727

Source: processed by the author, using statistical program R 2019

From the results shown in Table 7, we can see that MODEL 2 is better than 
MODEL 1 and MODEL 3, because it also has the lowest p-value. Finally, it 
was selected MODEL 2 as the best model for fitting the claim severity.

There is also another way to judge which model is the best. This comparison 
is provided by GCV score. The lower GCV score means the best model is. We 
present this score for our models in the next Table 8.

Table 8
GCV scores of claim severity models

MODEL GCV score
MODEL 1 1.5652
MODEL 2 1.5600
MODEL 3 1.5662

Source: processed by the author, using statistical program R 2019 

4.2.3 Pricing Application and Pure Premium
The tariff is given by the model of the pure premium. Fitting model for 

frequency and severity can provide a better understanding of the way in which 
factors affect the cost of claims. This more easily allows the identification 
and removal (via smoothing) of certain random effects from one element 
of the experience. Ultimately, however, these underlying models generally 
need to be combined to give an indication of the pure premium relativities. 
In the case of multiplicative models for a single claim type, the calculation 
is straightforward – the frequency multipliers for each factor can simply be 
multiplied by the severity multipliers for the same factors (which is analogous 
to adding the parameter estimates when using a log link function). To analyze 
the premium directly, one might consider using a Tweedie models. The reason 
for the separation claim frequency and claim severity analyze is:
• The claim frequency is usually more stable than claim severity and often 

much of the power of rating factors is related to claim frequency – these 
factors can then be estimated with greater accuracy;
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• A separate analysis gives more insight into how a rating factor affects the 
pure premium. [10]
A great advantage of the GLMs with multiplicative link is that it is easy 

to use it in practice and the interpretation is very intuitive. In the previous 
part of this paper we have calculate a reference level of premium and we 
have applied relativities to adjust down or up the premium based on the risk 
properties of insured. 

The typical model form for modelling insurance claim counts of frequencies 
is a multiplicative Poisson. As well as being a commonly assumed distribution 
for claim numbers, the Poisson distribution also has a particular feature which 
makes it intuitively appropriate in that it is invariant to measures of time. In 
other words, measuring frequencies per month and measuring frequencies per 
year will yield the same results using a Poisson distribution. This is not true 
of some other distributions such as gamma.

Specifically, the claim frequency model is represented by the following 
equation:

We assume that we want to apply price segments as a function of vehicle 
value. In practice in the case of claim frequencies the prior weights are 
typically set to be the exposure of each record. In the case of claim counts the 
offset term is set to be the  of the exposure. 

A common model form in this paper for modelling severities follows 
gamma distribution. As well as often being appropriate because of its general 
form, the gamma distribution also has an intuitively attractive property for 
modelling claim amounts since it is invariant to measures of currency. In 
other words, measuring severities in dollars and measuring it in cents will 
yield the same results. This is not true of some other distributions such as 
Poisson. 

The similar form can be expressed for severity model which predicts the 
claim costs per policy where the various properties of policyholder are taken 
into consideration

Although it is not as simple as in the case of GLMs, we can replicate 
a classical system of relativities in GAM structure. The pure premium which 
is mentioned above in this section can be generally expressed as 

.
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5.  Summary, Conclusion and Discussion
Nowadays, we can see a revolution in the general non-life insurance world 

(i.e., mostly a car insurance or a property insurance). The new technology is 
going to transform our daily life, and probably change the face of insurance 
in the medium term.

The aim of this paper is to provide some answers to the question of whether 
it is possible to change the way of calculating car insurance premiums. A free 
available database of an insurer from package ‘insuranceData’, has been 
used. The GAMs approach has been used to measure the impact of the veh_
value on the risk of claims in automobile insurance.In the previous section 
we presented some conclusions regarding the use of three models to predict 
claim frequency and claim severity to produce pure premium.

We have also compared a pricing model widely used in practice with 
GAM approaches for proposed three models for both risk and severity models 
for select the best one. Initially, the GAMs approach based on independent 
Thin plate splines highlighted the existence of a non-proportional relationship 
between of the vehicle value and number of claims. GAMs are often difficult 
to interpret but in practice they offer more flexibility than other alternatives. 
Future work could determine the actual value (benefits, improved customer 
satisfaction, etc.) to implement pricing systems based on GAMs.

Finally, to highlight some of the benefits of GAMs, it should be noted that 
we have proposed some models with price structure based on their results. 
In that sense, we have considered a conventional price structure in which 
a reference premium is multiplied by relativities that have been obtained from 
the combination of the parametric part, that is, estimated parameters, known 
as price relativities and the effect of the vehicle value. The contribution of 
GAMs could be relevant in future research where more telemetric information 
could be introduced in the pricing system, such as sudden accelerations or 
braking, without including necessarily the moment and location of driving, 
which is, for many drivers, a privacy concern. The dependence between 
different types of claims could also be studied, in order to add the contracts of 
the same insuree. In such situations, the Generalized Additive Models for the 
Location, Scale and Shape (GAMLSS) proposed by Rigby and Stasinopoulos 
[12] could be considered.

The main aim of this paper is to start finding ways to correct the premium 
dynamically where are known characteristics of the driver and non-linear 
relationship is present. This point of view allows to analyze also the driving 
style of a driver. This fact improves pricing techniques in non-life insurance.
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